Компания Vigilant применила теорию информации для борьбы с угрозами

Компания Vigilant применила теорию информации для борьбы с угрозами

Специалисты фирмы намерены применять для противодействия вредоносному программному обеспечению математические методы измерения энтропии. Вычисляя степень неопределенности фрагментов в потоке данных, можно обнаруживать аномалии, которые, в свою очередь, способны указать на присутствие опасных приложений или активности злоумышленников.

Так, если последующий фрагмент полностью предсказуем на основании сведений о предыдущих, то можно говорить, что энтропия в рассматриваемом случае имеет нулевое значение. При равновесном выборе из двух вариантов (как в общеизвестном примере с подбрасыванием монеты) степень случайности соответствует одному биту энтропии, и так далее. В защите информации энтропию можно привлекать, скажем, для оценки надежности паролей: если абсолютно случайное кодовое слово, состоящее из восьми произвольных и ни разу не повторяющихся символов, может характеризоваться 52 битами энтропии, то при использовании определенных слов степень неопределенности пароля снижается в среднем до 18 битов - а, следовательно, взломщик может испробовать не все 252 комбинаций, а лишь наиболее вероятные 218 (существенно снизив тем самым время подбора).

Vigilant, однако, использует энтропию для других целей, а именно - для выявления атипичных образцов данных, которые могут быть соотнесены с вредоносным кодом. Похожая тактика успешно применяется в службах защиты от спама: если одна учетная запись отправляет письма на тысячи адресов, не имеющих никакой явной связи ни с ней, ни друг с другом, то можно с высокой степенью уверенности заключить, что рассылка является нежелательной. Эксперты компании уверены, что расчет показателя энтропии может быть столь же эффективно использован для отсеивания вредоносных объектов (поскольку многие инфекции генерируют случайные имена файлов), а также доменов. В частности, по данным Vigilant, степень неопределенности обычного доменного имени изменяется в пределах от 2,5 до 3,9 битов; следовательно, если энтропия превышает уровень в 4 бита, то перед нами, скорее всего, продукт работы вредоносного генератора случайных имен.

Еще один вариант применения соответствующих расчетов - борьба с программными шпионами, которые используются в долговременных атаках повышенной сложности (APT). Чтобы скрыть факт утечки сведений, шпионы часто шифруют информацию перед ее отправкой хозяину, но при передаче используют стандартный протокол HTTP, а не защищенное соединение. Обычный текст на естественном языке имеет невысокие показатели энтропии (например, для английского языка - от 0,6 до 1,5 бит); напротив, шифртекст по самой своей сущности должен характеризоваться как можно более высокой степенью непредсказуемости. Соответственно, если по обычному исходящему соединению вдруг начинают идти потоки данных с высоким показателем энтропии, то это явственно сигнализирует о попытке передать криптованные сведения - что, в свою очередь, вызывает обоснованные подозрения.

PC World

Письмо автору

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Автор роликов на YouTube борется с ИИ-плагиатом, подсовывая ботам мусор

На YouTube плодятся видеоматериалы, созданные на основе краденого контента с помощью ИИ. Автоматизированный плагиат позволяет мошенникам быстро получать доход с минимальными усилиями, а жертвы сплотились и пытаются дать отпор.

Автор видеоконтента F4mi борется с ИИ-ботами, ворующими расшифровки, вставляя в них большое количество скрытых мусорных данных, Подобное дополнение не мешает пользователям читать тексты, но способно обесценить творение умного помощника, обрабатывающего добычу скрейперов.

Разработанный F4mi метод полагается на использование формата ASS, созданного десятки лет назад для субтитров. Мусор вносится в расшифровки в пропорции 2:1, при этом используются фрагменты из открытых источников либо сгенерированные ИИ выдумки.

Возможности ASS позволяют задать нулевые значения размера и прозрачности вставок, то есть сделать их невидимыми. В результате обработки таких файлов ИИ-пособник мошенников выдает тексты, непригодные для использования.

Автор идеи признает, что более мощные инструменты вроде ChatGPT o1 смогут отфильтровать мусор и правильно воспроизвести оригинал. В этом случае придется еще помудрить над ASS-файлами, чтобы затруднить задачу и таким помощникам.

Поддержки ASS на YouTube не предусмотрено, там отдают предпочтение YTT, но можно использовать конвертер. В мобильной версии YouTube содержимое таких файлов будет отображаться некорректно — в виде черного окна поверх видео.

Изобретательному автору удалось обойти и это препятствие. Был написан Python-скрипт, который прячет мусорные вставки как черный текст на черном фоне. Единственная проблема, которая пока не решена, — это креш, возникающий на слишком тяжелых файлах.

К сожалению, придуманный F4mi трюк не помеха для таких инструментов, как Whisper разработки OpenAI, который сам делает расшифровку аудиозаписей, притом, по отзывам, вполне сносно.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru