Компания Vigilant применила теорию информации для борьбы с угрозами

Компания Vigilant применила теорию информации для борьбы с угрозами

Специалисты фирмы намерены применять для противодействия вредоносному программному обеспечению математические методы измерения энтропии. Вычисляя степень неопределенности фрагментов в потоке данных, можно обнаруживать аномалии, которые, в свою очередь, способны указать на присутствие опасных приложений или активности злоумышленников.

Так, если последующий фрагмент полностью предсказуем на основании сведений о предыдущих, то можно говорить, что энтропия в рассматриваемом случае имеет нулевое значение. При равновесном выборе из двух вариантов (как в общеизвестном примере с подбрасыванием монеты) степень случайности соответствует одному биту энтропии, и так далее. В защите информации энтропию можно привлекать, скажем, для оценки надежности паролей: если абсолютно случайное кодовое слово, состоящее из восьми произвольных и ни разу не повторяющихся символов, может характеризоваться 52 битами энтропии, то при использовании определенных слов степень неопределенности пароля снижается в среднем до 18 битов - а, следовательно, взломщик может испробовать не все 252 комбинаций, а лишь наиболее вероятные 218 (существенно снизив тем самым время подбора).

Vigilant, однако, использует энтропию для других целей, а именно - для выявления атипичных образцов данных, которые могут быть соотнесены с вредоносным кодом. Похожая тактика успешно применяется в службах защиты от спама: если одна учетная запись отправляет письма на тысячи адресов, не имеющих никакой явной связи ни с ней, ни друг с другом, то можно с высокой степенью уверенности заключить, что рассылка является нежелательной. Эксперты компании уверены, что расчет показателя энтропии может быть столь же эффективно использован для отсеивания вредоносных объектов (поскольку многие инфекции генерируют случайные имена файлов), а также доменов. В частности, по данным Vigilant, степень неопределенности обычного доменного имени изменяется в пределах от 2,5 до 3,9 битов; следовательно, если энтропия превышает уровень в 4 бита, то перед нами, скорее всего, продукт работы вредоносного генератора случайных имен.

Еще один вариант применения соответствующих расчетов - борьба с программными шпионами, которые используются в долговременных атаках повышенной сложности (APT). Чтобы скрыть факт утечки сведений, шпионы часто шифруют информацию перед ее отправкой хозяину, но при передаче используют стандартный протокол HTTP, а не защищенное соединение. Обычный текст на естественном языке имеет невысокие показатели энтропии (например, для английского языка - от 0,6 до 1,5 бит); напротив, шифртекст по самой своей сущности должен характеризоваться как можно более высокой степенью непредсказуемости. Соответственно, если по обычному исходящему соединению вдруг начинают идти потоки данных с высоким показателем энтропии, то это явственно сигнализирует о попытке передать криптованные сведения - что, в свою очередь, вызывает обоснованные подозрения.

PC World

Письмо автору

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Спрос на услуги по безопасности генеративного ИИ активно растет

По данным Swordfish Security, за услугами по безопасности больших языковых моделей (LLM Security) в 2024 году обращались 35% заказчиков. Спрос на такие услуги растет прямо пропорционально внедрению подобных инструментов в бизнес-практику.

В 2025 году такая практика будет только расширяться, поскольку генеративный интеллект, прежде всего, большие языковые модели, будут внедряться все более активно. В будущем году уровень проникновения генеративного ИИ составит не менее 40%, а к 2030 году может достигнуть и 90%.

Как отметил директор по развитию бизнеса ГК Swordfish Security Андрей Иванов, рост интереса к безопасности больших языковых моделей стал одной из главных тенденций 2024 года. Недооценка таких рисков чревата серьезными проблемами. Среди таких рисков Андрей Иванов инъекции вредоносного кода в промпт, уязвимости в цепочках поставок, выдача ошибочной информации за истину на этапе обучения модели и даже кража модели злоумышленниками.

«В бизнесе используют большие модели для распознавания текста, анализа данных, предиктивной аналитики, поиска, оценки ресурса механических узлов промышленных агрегатов и многого другого. Многие отрасли, та же ИТ, активно используют ИИ-помощников. Например, в DevSecOps мы обучили и применяем модель, которая может анализировать и приоритизировать большой объем уязвимостей кода, таким образом освобождая время для квалифицированных инженеров для других, более сложных и творческих задач, — комментирует Андрей Иванов. — Критичным может оказаться, например, некорректная работа виртуальных ассистентов, которые могут влиять на клиентские решения, аналитику, дающую ошибочную информацию в цепочке поставок. Существуют атаки, отравляющие данные или позволяющие получить конфиденциальную информацию, и так далее. К этому стоит относиться как к любой информационной системе, влияющей на бизнес-процесс и проводящей, в случае компрометации, к потерям репутации и убыткам».

Внедрение ИИ требует корректировки корпоративных политик ИБ. Важно делать акцент на безопасности, а разрабатывать модели необходимо в соответствие с практиками разработки безопасного ПО, анализируя исходный код и зависимости, ответственно относиться к контролю доступа к источникам данных и стараться использовать доверенные алгоритмы обучения, уверен Андрей Иванов. Также важно учитывать то, что многие большие языковые модели используют облачную архитектуру, а это создает угрозу утечки конфиденциальных данных.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru