SearchInform усилила защиту от кражи данных паспортов и банковских карт

SearchInform усилила защиту от кражи данных паспортов и банковских карт

SearchInform усилила защиту от кражи данных паспортов и банковских карт

Компания SearchInform расширила функциональность DLP-системы «Контур информационной безопасности» с помощью технологий распознавания текстов компании ABBYY. Благодаря нововведению, система способна точнее определить в цифровом потоке изображения паспортов, банковских карт, других конфиденциальных документов и данных. 

Новый инструмент, основанный на технологии оптического распознавания текстов (OCR), самостоятельно классифицирует файлы, выделяя среди них персональные данные, которые циркулируют внутри компании. Встроенные классификаторы ABBYY помогают определить любые другие документы установленных образцов: водительские удостоверения, служебные пропуска, дипломы об образовании и др. 

По оценке аналитиков SearchInform, объем сканированных копий в среднем составляет около 30% всех документов. К примеру, в госсекторе сканированные копии составляют около 41,5% документов, в ритейле – 17%, в сфере услуг – 23%, а в банках и телеком-сфере приближаются к 45%. Технология OCR контролирует движение электронных версий документов в корпоративной сети и снижает риск утечек информации.

Раньше DLP-система SearchInform была по умолчанию оснащена технологией OCR другого производителя. Сейчас в модуле SearchServer в качестве движка полнотекстового распознавания используется ABBYY FineReader Engine. Технологии распознавания текстов и алгоритмы классификации изображений компании ABBYY уменьшают необходимость ручной обработки за счет автоматического определения типов персональных данных. Такой способ позволяет провести ретроспективный анализ.

«ABBYY FineReader Engine отличается большой точностью распознавания текста, в чем мы убедились, проведя ряд собственных тестов, – сравнили решение ABBYY и другого разработчика.  ABBYY совершает на 10-12% меньше ошибок при распознании обычного текста и на 30% меньше в работе со сложными изображениями», – прокомментировал Иван Мершков, технический директор SearchInform.

Алгоритмы ABBYY по максимуму используют возможности современных процессоров. Некоторые задачи ABBYY выполняет в 3-4 раза быстрее стандартного OCR, повышая качество распознавания. Разница заметна при обработке многостраничных документов или изображений высокого разрешения. На практике это означает, что в компании повышается защита от профессиональных инсайдеров, которые знакомы с механизмами работы DLP-систем и основательно прячут документы.

«Компаниям крайне важно контролировать данные, связанные с коммерческой тайной или конфиденциальной информацией клиентов. Возможность автоматически выявлять критически важные для бизнеса данные даже в потоке изображений стала неотъемлемой частью современных DLP-систем. С помощью возможностей решения ABBYY, интегрированного в систему SearchInform, компании могут еще эффективнее предотвращать утечки в формате изображений», – отметил Дмитрий Шушкин, заместитель генерального директора ABBYY Россия.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Спрос на услуги по безопасности генеративного ИИ активно растет

По данным Swordfish Security, за услугами по безопасности больших языковых моделей (LLM Security) в 2024 году обращались 35% заказчиков. Спрос на такие услуги растет прямо пропорционально внедрению подобных инструментов в бизнес-практику.

В 2025 году такая практика будет только расширяться, поскольку генеративный интеллект, прежде всего, большие языковые модели, будут внедряться все более активно. В будущем году уровень проникновения генеративного ИИ составит не менее 40%, а к 2030 году может достигнуть и 90%.

Как отметил директор по развитию бизнеса ГК Swordfish Security Андрей Иванов, рост интереса к безопасности больших языковых моделей стал одной из главных тенденций 2024 года. Недооценка таких рисков чревата серьезными проблемами. Среди таких рисков Андрей Иванов инъекции вредоносного кода в промпт, уязвимости в цепочках поставок, выдача ошибочной информации за истину на этапе обучения модели и даже кража модели злоумышленниками.

«В бизнесе используют большие модели для распознавания текста, анализа данных, предиктивной аналитики, поиска, оценки ресурса механических узлов промышленных агрегатов и многого другого. Многие отрасли, та же ИТ, активно используют ИИ-помощников. Например, в DevSecOps мы обучили и применяем модель, которая может анализировать и приоритизировать большой объем уязвимостей кода, таким образом освобождая время для квалифицированных инженеров для других, более сложных и творческих задач, — комментирует Андрей Иванов. — Критичным может оказаться, например, некорректная работа виртуальных ассистентов, которые могут влиять на клиентские решения, аналитику, дающую ошибочную информацию в цепочке поставок. Существуют атаки, отравляющие данные или позволяющие получить конфиденциальную информацию, и так далее. К этому стоит относиться как к любой информационной системе, влияющей на бизнес-процесс и проводящей, в случае компрометации, к потерям репутации и убыткам».

Внедрение ИИ требует корректировки корпоративных политик ИБ. Важно делать акцент на безопасности, а разрабатывать модели необходимо в соответствие с практиками разработки безопасного ПО, анализируя исходный код и зависимости, ответственно относиться к контролю доступа к источникам данных и стараться использовать доверенные алгоритмы обучения, уверен Андрей Иванов. Также важно учитывать то, что многие большие языковые модели используют облачную архитектуру, а это создает угрозу утечки конфиденциальных данных.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru