Выпущена система фильтрации спама Rspamd 1.6

Выпущена система фильтрации спама Rspamd 1.6

Выпущена система фильтрации спама Rspamd 1.6

Представлен релиз системы фильтрации спама Rspamd 1.6, предоставляющей средства для оценки сообщений по различным критериям, включая правила, статистические методы и чёрные списки, на основе которых формируется итоговый вес сообщения, используемый для принятия решения о необходимости блокировки.

Rspamd поддерживает практически все возможности, реализованные в SpamAssassin, и имеет ряд особенностей, позволяющих фильтровать почту в среднем в 10 раз быстрее, чем SpamAssassin, а также обеспечивать лучшее качество фильтрации. Код системы написан на языке Си и распространяется под лицензией BSD.

Rspamd построен с использованием событийно-ориентированной архитектуры (Event-driven) и изначально рассчитан на применение в высоконагруженных системах, позволяя обрабатывать сотни сообщений в секунду, пишет opennet.ru. Правила для выявления признаков спама отличаются высокой гибкостью и в простейшем виде могут содержать регулярные выражения, а в более сложных ситуациях могут оформляться на языке Lua. Расширение функциональности и добавление новых типов проверок реализуется через модули, которые могут создаваться на языках Си и Lua. Например, доступны модули для проверки отправителя с использованием SPF, подтверждения домена отправителя через DKIM, формирования запросов в списки DNSBL. Для упрощения настройки, создания правил и отслеживания статистики предоставляется административный web-интерфейс.

Основные новшества:

  • Встроенная поддержка протокола Milter, позволяющая обойтись без надстройки Rmilter, развитие которой прекращено. Встроенный Milter может использоваться в двух режимах - Proxy для крупных систем и Self-scan для небольших конфигураций (данный режим отличается существенным упрощением настройки). Режим Proxy требует отдельного сканирующего слоя, в то время как в режиме "self-scan" обработчик rspamd_proxy сканирует сообщение собственными силами и взаимодействует с MTA, такими как Postfix и Sendmail, напрямую при помощи протокола Milter;
  • Полная поддержка цифровых подписей и меток ARC (Authenticated Received Chain), позволяющих гарантировать, что сообщение было подписано и затем перенаправлено через ряд заслуживающих доверия шлюзов. Реализованный в Rspamd модуль ARC поддерживает как верификацию, так и создание подписей для исходящих сообщений. Настройка модуля ARC очень похожа на модуль dkim_signing;
  • Новая модель хранения статистики в БД Redis, упрощающая выборку необходимых токенов и определение времени их жизни. В выпуске Rspamd 1.6 новая схема хранения статистики позиционируется как экспериментальная, но в будущем выпуске она будет включена по умолчанию, а также будут предоставлены инструменты для преобразования старого хранилища без потери данных;
  • Задействован новый алгоритм определения устаревших записей для внутренних кэшей. Вместо ранее применяемого классического алгоритма LRU (Least Recently Used) в ноой версии задействован алгоритм LFU ( Least Frequently Used), при котором фактором актуальности записи является не последнее обращение, а частота обращений. При новом алгоритме в кэше дольше сохраняются наиболее часто используемые записи, что положительно отражается на производительности кэширования;
  • В модуле DMARC появилась поддержка отправки отчётов для определённых доменов и правил. Администратору предоставлены гибкие возможности по настройке содержимого отчётов и частоты их отправки. Отчёты позволяют увеличить качество взаимодействия с ресурсами, использующими DMARC (например, paypal.com), в том числе дают возможность отследить и отреагировать на некоторые попытки фишинга;
  • Представлен новый плагин spamtrap, позволяющий выхватить письмо со спамом по заданным признакам, например можно использовать для обучения фильтров на основе работы ловушек спама (honeypots);
  • Внесена большая порция улучшений в модуль url_redirector, выполняющий проверку пробросов на спамерские ссылки, скрытые через применение сервисов редиректа URL;
  • В прокси добавлена поддержка сжатия данных при отправке сообщений на уровень сканирования;
  • Внесена порция оптимизаций производительности: для регулярных выражений Hfilter задействована библиотека hyperscan, обеспечено кэширования хэшей тел сообщений DKIM, добавлено кэширование результатов работы алгоритма стемминга Snowball.
Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

Инфостилер Jarka прожил год на PyPI под видом инструментов интеграции ИИ

Эксперты «Лаборатории Касперского» нашли на PyPI два схожих пакета, якобы реализующих доступ к API популярных ИИ-моделей — GPT-4 Turbo и Claude AI. Анализ показал, что истинной целью в обоих случаях является внедрение зловреда JarkaStealer.

Вредоносные библиотеки gptplus и claudeai-eng были загружены в репозиторий Python-кодов в ноябре прошлого года, притом из-под одного и того же аккаунта. До удаления с подачи Kaspersky их скачали более 1700 раз пользователи из 30 стран (в основном жители США, Китая, Франции, Германии и России).

 

Описания содержали инструкции по созданию чатов для ИИ-ботов и примеры работы с большими языковыми моделями (БЯМ, LLM). Для имитации заявленной функциональности в код был встроен механизм взаимодействия с демопрокси ChatGPT.

При запуске параллельно происходит загрузка с GitHub файла JavaUpdater.jar — инфостилера Jarka. При отсутствии у жертвы софта Java с Dropbox скачивается JRE.

Внедряемый таким образом вредонос умеет выполнять следующие действия в системе:

  • собирать системную информацию;
  • воровать информацию из браузеров;
  • прерывать процессы Google Chrome и Microsoft Edge (чтобы вытащить сохраненные данные);
  • отыскивать сессионные токены в Telegram, Discord, Steam, чит-клиенте Minecraft;
  • делать скриншоты.

Украденные данные архивируются и передаются на C2-сервер. После этого файл с добычей удаляется с зараженного устройства, чтобы скрыть следы вредоносной активности.

Как оказалось, владельцы JarkaStealer продают его в Telegram по модели MaaS (Malware-as-a-Service, «вредонос как услуга»), однако за доступ уже можно не платить: исходники были опубликованы на GitHub. В рекламных сообщениях и коде зловреда обнаружены артефакты, позволяющие заключить, что автор стилера владеет русским языком.

«Обнаруженная кампания подчёркивает постоянные риски, связанные с атаками на цепочки поставок, — отметил эксперт Kaspersky GReAT Леонид Безвершенко. — При интеграции компонентов с открытым исходным кодом в процессе разработки критически важно проявлять осторожность. Мы рекомендуем организациям внедрять строгую проверку целостности кода на всех этапах разработки, чтобы убедиться в легитимности и безопасности внешнего программного обеспечения или внешних компонентов».

Тем, кто успел скачать gptplus или claudeai-eng, рекомендуется как можно скорее удалить пакет, а также обновить все пароли и сессионные токены.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru