Представлен бот для защиты от кибермошенников

Представлен бот для защиты от кибермошенников

Представлен бот для защиты от кибермошенников

Стартап Netsafe выпустил оригинальную защиту от мошенников - чатбот Re:Scam. Разработка призвана определять в почте фишинговые письма и, имитируя разговор людей, вести бесконечную переписку, которая вынудит мошенников рано или поздно ее прекратить.

"Хакеры будут тратить свое время на разговор с компьютером вместо того, чтобы атаковать реальных людей", - пояснили авторы разработки.

Бот умеет шутить, задавать наводящие вопросы и даже делать грамматические ошибки, чтобы имитировать максимально реалистичное общение. Параллельно Re:Scam может общаться с огромным количеством людей, пишет rg.ru.

Также бот способен собирать информацию о мошенников и анализировать полученные данные для того, чтобы помочь пользователям не стать жертвой.

 

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

ИИ может склонировать JS-зловреда 10 тыс. раз и добиться FUD в 88% случаев

Проведенное в Palo Alto Networks исследование показало, что ИИ-модель можно заставить многократно обфусцировать вредоносный код JavaScript и в итоге получить семпл, не детектируемый антивирусами (FUD, fully undetectable).

Речь идет об онлайн-помощниках, авторы которых вводят ограничения во избежание злоупотреблений ИИ-технологиями — в отличие от создателей «злых» аналогов (WormGPT, FraudGPT и т. п.), заточенных под нужды киберкриминала.

Разработанный в Palo Alto алгоритм использует большую языковую модель (БЯМ, LLM) для пошаговой трансформации кода с сохранением его функциональности. При его тестировании на реальных образцах JavaScript-зловредов кастомный классификатор на основе модели глубокого обучения выдал вердикт «безвредный» в 88% случаев.

Опытным путем было установлено, что уровень детектирования снижается по мере увеличения количества итераций (в ходе экспериментов LLM создавала по 10 тыс. вариантов вредоноса). Примечательно, что привносимые изменения выглядели более естественно в сравнении с результатами готовых инструментов вроде obfuscator.io.

Для проведения исследования был также создан набор подсказок для выполнения различных преобразований, таких как переименование переменной, разделение строк, добавление мусора, удаление ненужных пробелов, альтернативная реализация функции.

Финальные варианты обфусцированных JavaScript были ради интереса загружены на VirusTotal. Их не смог распознать ни один антивирус; повторение проверок через четыре дня дало тот же эффект.

 

Результаты исследования помогли экспертам усовершенствовать свой инструмент детектирования JavaScript. Полученные с помощью LLM образцы были добавлены в тренировочный набор данных для модели машинного обучения; их использование позволило повысить результативность классификатора на 10%.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru