Система распознавания лиц от Amazon узнала в политиках США преступников

Система распознавания лиц от Amazon узнала в политиках США преступников

Система распознавания лиц от Amazon узнала в политиках США преступников

Американский союз защиты гражданских свобод (ACLU) провел тестирование системы распознавания лиц Rekognition от Amazon. Результаты показали, что система ошибочно определила 28 членов Конгресса как уголовников.

По словам проводивших эксперимент специалистов, они загрузили 25 000 фотографий под арестом (магшот) из публичного источника, а затем сопоставили их с официальными фотографиями всех 535 членов Конгресса.

В итоге Rekognition нашла 28 совпадений, из которых 6 пришлось на чернокожих политиков. Системы распознавания лиц известны своими погрешностями при распознавании чернокожих людей.

Представители партии Congressional Black Caucus, состоящей преимущественно из афроамериканцев, давно выказывали обеспокоенность Rekognition по поводу «глубоких негативных последствий» использования такой технологии.

Проблема с ложными опознаниями, по мнению некоторых экспертов, может привести к конфликтам чернокожих граждан с правоохранительными органами. Стоит отметить, что Rekognition уже использует ряд полицейских отделений по всей Америке.

Исходя из результатов теста, ACLU призывает Конгресс пересмотреть свою позицию относительно использования правоохранителями системы распознавания лиц от Amazon.

Весь эксперимент обошелся союзу всего в $12,33.

Новая атака в Telegram использует официальную аутентификацию мессенджера

Эксперты зафиксировали новую и довольно изощрённую фишинговую кампанию в Telegram, которая уже активно используется против пользователей по всему миру. Главная особенность атаки в том, что злоумышленники не взламывают мессенджер и не подделывают его интерфейс, а аккуратно используют официальные механизмы аутентификации Telegram.

Как выяснили аналитики компании CYFIRMA, атакующие регистрируют собственные API-ключи Telegram (api_id и api_hash) и с их помощью инициируют реальные попытки входа через инфраструктуру самого мессенджера. Дальше всё зависит от того, как именно жертву заманят на фишинговую страницу.

Всего специалисты наткнулись на два подобных сценария. В первом случае пользователю показывают QR-код в стиле Telegram, якобы для входа в аккаунт. После сканирования кода в мобильном приложении запускается легитимная сессия, но уже на стороне злоумышленника.

Во втором варианте жертву просят вручную ввести номер телефона, одноразовый код или пароль двухфакторной защиты. Все эти данные тут же передаются в официальные API Telegram.

 

Ключевой момент атаки наступает позже. Telegram, как и положено, отправляет пользователю системное уведомление в приложении с просьбой подтвердить вход с нового устройства. И вот тут в дело вступает социальная инженерия. Фишинговый сайт заранее подсказывает, что это якобы «проверка безопасности» или «обязательная верификация», и убеждает нажать кнопку подтверждения.

В итоге пользователь сам нажимает «Это я» и официально разрешает доступ к своему аккаунту. Никакого взлома, обхода шифрования или эксплуатации уязвимостей не требуется: сессия выглядит полностью легитимной, потому что её одобрил владелец аккаунта.

По данным CYFIRMA, кампания хорошо организована и построена по модульному принципу. Бэкенд централизованный, а домены можно быстро менять, не затрагивая логику атаки. Такой подход усложняет обнаружение и блокировку инфраструктуры.

После захвата аккаунта злоумышленники, как правило, используют его для рассылки фишинговых ссылок контактам жертвы, что позволяет атаке быстро распространяться дальше — уже от лица доверенного пользователя.

RSS: Новости на портале Anti-Malware.ru