MaxPatrol SIEM теперь выявляет атакующих на этапе сбора данных

MaxPatrol SIEM теперь выявляет атакующих на этапе сбора данных

MaxPatrol SIEM теперь выявляет атакующих на этапе сбора данных

Пользователи системы MaxPatrol SIEM теперь могут выявлять злоумышленников на этапе, когда они собирают данные о скомпрометированной сети, чтобы развивать свою атаку. Для этого в MaxPatrol SIEM загружен пакет экспертизы с правилами обнаружения атак, проводимых с использованием тактики «Разведка» (Discovery) по модели MITRE ATT&CK.

После получения постоянного доступа к сети жертвы злоумышленникам требуется определить, где в инфраструктуре они находятся, что их окружает и что они могут контролировать. Во время разведки атакующие собирают данные о скомпрометированной системе и внутренней сети, и это помогает им сориентироваться, чтобы решить, как действовать дальше. Для этого злоумышленники часто используют встроенные инструменты операционных систем.

Новый пакет экспертизы включает в себя правила детектирования 15 популярных техник разведки. Теперь пользователи смогут обнаружить активность злоумышленников еще во время их попыток получить список учетных записей домена, сведения о парольной политике, перечень установленных приложений и служб, информацию о состоянии средств защиты.

«Отличить активность атакующих, которые проводят разведку, от легитимных запросов обычных пользователей непросто, — комментирует Антон Тюрин, руководитель отдела экспертных сервисов PT Expert Security Center. — Если злоумышленники действуют под учетной записью реального пользователя и используют встроенные утилиты, то их активность, как правило, теряется в потоке событий. Новый пакет экспертизы поможет обратить внимание специалистов по ИБ на события, которые на первый взгляд могут не вызывать подозрений».

Пакет экспертизы, посвященный тактике «Разведка» (Discovery), — это пятый пакет с правилами обнаружения атак по модели MITRE ATT&CK; всего в матрице ATT&CK описано 12 тактик. Пакеты, ранее загруженные в MaxPatrol SIEM, продолжают пополняться правилами по мере появления новых способов обнаружения атак. Так, одновременно с выходом пятого пакета экспертизы первый пакет из серии получил 14 правил корреляции для выявления техник выполнения кода и обхода защиты.

Минцифры создаст полигон для тестирования систем с ИИ на безопасность

Минцифры планирует создать киберполигон для тестирования систем с искусственным интеллектом (ИИ) на безопасность. В первую очередь речь идёт о решениях, предназначенных для применения на объектах критической инфраструктуры, а также о системах с функцией принятия решений.

О том, что министерство ведёт работу над созданием такого полигона, сообщил РБК со ссылкой на несколько источников.

Площадка будет использоваться для тестирования ИИ-систем, которые в дальнейшем должны пройти сертификацию ФСТЭК и ФСБ России. Это предусмотрено правительственным законопроектом «О применении систем искусственного интеллекта органами, входящими в единую систему публичной власти, и внесении изменений в отдельные законодательные акты».

Документ вводит четыре уровня критичности ИИ-систем:

  • минимальный — влияние на безопасность отсутствует или минимально;
  • ограниченный;
  • высокий — относится к системам, используемым на объектах критической информационной инфраструктуры;
  • критический — системы, способные угрожать жизни и здоровью людей или безопасности государства, а также автономные комплексы, принимающие самостоятельные решения.

Определять уровень критичности будет Национальный центр искусственного интеллекта в сфере госуправления при правительстве. Эта же структура займётся ведением реестра сертифицированных ИИ-систем.

Конкретные требования к сертификации планируется закрепить в отдельных нормативных документах, которые пока находятся в разработке. На текущем этапе единственным обязательным условием является включение программного обеспечения в реестр Минцифры.

По данным «Российской газеты», распространять новые требования на коммерческие ИИ-решения не планируется. При этом в аппарате первого вице-премьера Дмитрия Григоренко пояснили, что ключевая цель законопроекта — снизить риски применения ИИ в сферах с высокой ценой ошибки, включая здравоохранение, судопроизводство, общественную безопасность и образование.

RSS: Новости на портале Anti-Malware.ru