Вышла новая версия Security Vision UEBA с расширенным набором ML-моделей

Вышла новая версия Security Vision UEBA с расширенным набором ML-моделей

Вышла новая версия Security Vision UEBA с расширенным набором ML-моделей

Продукт Security Vision UEBA автоматически выстраивает типовые модели поведения объектов инфраструктуры (пользователей, учетных записей, устройств, процессов и др.), анализируя сырые потоки данных (сетевой трафик, логи прокси-серверов, почтовых серверов, windows/linux серверов и рабочих станций и др.), выявляет отклонения и предоставляет гибкие инструменты по их анализу, расследованию и реагированию. Наиболее значимые обновления:

Anomaly Detection

Применение методов Anomaly Detection расширяет возможности выявления аномалий в корпоративной инфраструктуре, применяя большое количество разных моделей и методик Machine Learning, стекируя результаты отдельных моделей и объединяя полученные события в инциденты для дальнейшего расследования.

ML-модели

В новой версии Security Vision UEBA существенного расширен набор используемых ML-моделей. Применяются следующие модели:

  • «с учителем» для выявления похожих паттернов реальных атак (предобученные на различных атаках и вредоносных активностях (DDOS, botnet, C&C и др.)),
  • модели «без учителя» для нахождения аномалий среди сетевого трафика и событий с хостов, нейросети (в т.ч.  RNN),
  • модели для обнаружения мимикрирующих процессов
  • и др.

Важно отметить, что обработка всех моделей выполняется на инфраструктуре Заказчика без необходимости отправки каких-либо данных «в облако». За счет оптимизаций архитектуры и самих моделей требования к инфраструктуре минимизированы и не требуют специализированного оборудования.

Продукт позволяет проводить гибкую настройку всех параметров ML-моделей через UI, а также добавлять собственные модели.

Минимизация false-positive сработок

Особый упор сделан на оркестрации работы ML-моделей и минимизации false-positive (FP) сработок. Разработаны механизмы автоматического контроля работы и отключения моделей в случае большого количества сработок FP. Также Security Vision UEBA автоматически и регулярно переобучает модели на данных Заказчика для лучшей адаптации к инфраструктуре, потокам данных и их изменениям. Переобучаются также и модели «с учителем», где используемые датасеты типовых атак и вредоносных активностей автоматически объединяются и «растягиваются» на данные по инфраструктуре Заказчика, полученные из обработанных событий. Реализован автоматический подбор параметров модели: Security Vision UEBA в процессе обучения сама подбирает гиперпараметры для достижения лучшего результата сработок и минимизации количества FP.

Статистические методы дают возможность автоматически накапливать статистику по новым параметрам, объемным, частотным и количественным показателям по используемым хостам, процессам, командным строкам, именованным пайпам и многим другим характеристикам отдельно по каждому объекту наблюдения, что также существенно снижает уровень FP сработок и позволяет пользователю через UI гибко настраивать веса, добавлять или корректировать имеющиеся правила.

Правила корреляции

Расширен базовый набор правил корреляции, входящих в состав коробочного решения. Экспертами Security Vision были разработаны уникальные правила корреляции, позволяющие находить подозрительные действия в потоках сетевого трафика/потоков прокси серверов, а также выявлять подозрительные события на хостах. Данные алерты объединяются вместе со сработками движков статистики и ML, что в итоге позволяет собрать более полный анализ действий подозрительного объекта, учесть каждую сработку правила корреляции со своим уникальным весом (в зависимости от критичности), который будет суммирован с весом событий от других источников наблюдения и в случае превышения порогового значения может привести к созданию инцидента.

Также в Security Vision UEBA встроен полноценный редактор правил корреляции, используя который, можно настраивать правила любой глубины и сложности через UI продукта.  

Отображение объектов и сработок

Переработано отображение всех объектов и сработок для предоставления более полного и удобного функционала анализа и расследования полученных инцидентов: графы связей объектов, автоматическое обогащение данными из внешних и внутренних сервисов, drill-down до каждого связного объекта, исходные события по объекту с указанием источника и всех атрибутов, динамика поступления событий и др. В Security Vision UEBA встроены действия по базовому реагированию на полученные инциденты (например, с NGFW, active-листами и т.п.) или для отправки инцидентов в SOAR и SIEM системы.

Используя API продукта, можно гибко настраивать получение сработок по объектам, получать подозрительные события и алерты по каждому объекту (например, для обогащения этой информацией инцидентов в SOAR).

Расширение возможностей

Продукт Security Vision UEBA реализован на платформе Security Vision 5, что позволяет Заказчикам расширять его возможности, создавая как новые объекты наблюдения (включая их карточки, общие представления, процессы обработки и сценарии реагирования), корректировать или расширять процесс обработки выявленных сработок, создавать новые интеграции, корректировать и создавать дашборды и отчеты – все полностью через графические конструкторы, встроенные в UI продукта.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Российские предприятия атакованы под видом ВОЕНМЕХа — F6 винит FakeTicketer

Специалисты из департамента Threat Intelligence компании F6 обнаружили ряд признаков, указывающих на связь между кибершпионской кампанией HollowQuill и известной киберпреступной группировкой FakeTicketer.

По данным F6, атаки были направлены на российские промышленные предприятия. Хакеры использовали документ, который выглядел как официальное письмо от имени Балтийского государственного технического университета «ВОЕНМЕХ».

Однако еще в конце 2024 года активность, связанную с этой кампанией, заметили эксперты из Positive Technologies. Теперь же специалисты F6 провели дополнительное расследование и обнаружили пересечения с операциями группы FakeTicketer.

та группа, предположительно занимающаяся кибершпионажем, действует как минимум с июня 2024 года. Среди её целей — промышленные компании, госучреждения и даже спортивные чиновники.

Анализ вредоносной программы и используемой инфраструктуры показал, что в HollowQuill и у FakeTicketer используются схожие дропперы и похожие доменные имена. В частности, эксперты нашли совпадения с вредоносом Zagrebator.Dropper, который связывают с FakeTicketer:

  • Оба дроппера — LazyOneLoader и Zagrebator.Dropper — написаны на C#.
  • У них одинаковые названия иконок («faylyk»).
  • И файлы, и иконки хранятся в ресурсах программы; дропперы извлекают эти данные и записывают их с помощью одного и того же класса — BinaryWrite.
  • Код, создающий ярлыки, почти не отличается.
  • Используются файлы с названиями OneDrive*.exe и OneDrive*.lnk для маскировки активности.

Кроме того, в F6 заметили, что FakeTicketer раньше регистрировали ряд доменов с одинаковыми данными владельца. Один из таких доменов — phpsymfony[.]info. При этом в HollowQuill фигурировал домен phpsymfony[.]com — он использовался как C2-сервер для Cobalt Strike.

По мнению исследователей, эти совпадения позволяют предположить, что за кампанией HollowQuill, скорее всего, стоит группа FakeTicketer — хотя и с оговоркой, что уверенность в этом пока средняя.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru