Исследователи из Университета Сент-Луиса продемонстрировали атаку на большие языковые модели (LLM), позволяющую манипулировать процессами рассуждения нейросетей. В отличие от других методов атак на искусственный интеллект, эта уязвимость не обнаруживается стандартными средствами и не требует изменения запросов.
Авторы исследования, Зен Го и Реза Турани, назвали свою разработку DarkMind. Техника базируется на уязвимостях парадигмы «цепочки рассуждений» (Chain-of-Thought, CoT), используемой в таких моделях, как ChatGPT, GPT-4, O1 и LLaMA-3.
DarkMind внедряет скрытые триггеры в приложения, работающие поверх языковых моделей, что делает атаку практически незаметной при обычном использовании. Выявить её сложно даже в приложениях, которых уже насчитывается сотни тысяч, так как она активируется только при срабатывании определенных шаблонов рассуждений.
При этом меры защиты, предназначенные для противодействия другим типам манипулятивных атак, не обнаруживают DarkMind, и вредоносная активность выявляется лишь после её активации.
Исследователи также установили, что чем совершеннее LLM, тем более они уязвимы к данной технике атак. Более того, для её применения не требуется модификация запросов или алгоритмов работы моделей, что делает технологию простой в использовании и потенциально массовой, особенно в таких секторах, как финансы и медицина, где LLM активно внедряются.
Зен Го и Реза Турани сообщили, что работают над защитными мерами, направленными на предотвращение подобных атак, и призвали разработчиков усилить встроенные механизмы защиты от манипулятивных воздействий на LLM. Однако, по мнению Microsoft, создать полностью безопасные системы на базе генеративного ИИ невозможно.