Google помогла устранить более тысячи проблем в исходном коде проекта FFmpeg

Google помогла устранить множество проблем в исходном коде проекта FFmpeg

Корпорация Google поделилась деталями проекта, связанного с поиском и устранением ошибок в открытом мультимедиа пакете FFmpeg, который, как оказалось, активно используется внутри корпорации и в её продуктах, включая YouTube и Google Chrome.

В течение последних двух лет для процесса тестирования кодовой базы были задействованы 500 компьютерных ядер, а также исходный мультимедиа материал, собранный со всего интернета, включая файлы из самого проекта, находящиеся на сайте samples.mplayerhq.hu и собственный набор для тестирования регрессий проекта FFmpeg под названием FATE.

Тестирование заключалось в изменении исходных файлов и добавлении разнообразного случайного мусора с тем, чтобы выявить проблемы в функциях, занятых обработкой исходного материала для кодирования и декодирования - в компьютерной среде этот способ обыкновенно называется fuzzing. Другой способ тестирования - это прямой вызов функций библиотеки с не совсем корректными данными, чтобы проверить надёжность обработки подобной информации. Впоследствии, проект был расширен до 2000 ядер, а методы мутации исходных материалов были сделаны более разнообразными, пишет opennet.ru.

В ходе работы над проектом было выявлено более 1120 ошибок, которые уже устранены. Найденные ошибки можно разделить на следующие классы:

  • Разыменование NULL-указателей;
  • Неверные вычисления указателей, приводящие к SIGSEGV из-за использования "чужой" памяти;
  • Чтение и запись за пределы стека, кучи и массивов;
  • Неверные вызовы free(), а также двойное освобождение указателей;
  • Ошибки деления;
  • Ошибки assert();
  • Использование неинициализированной памяти.

Google таким же образом помогла форку FFmpeg, libav, в котором было устранено 413 ошибок.

ИИ в браузере может сливать ваши данные и принимать опасные решения за вас

Браузерные ИИ-агенты, которые обещают «сделать всё за пользователя» — от бронирования отелей до онлайн-покупок, — могут оказаться куда менее безопасными, чем кажется. К такому выводу пришли авторы нового исследования, посвящённого рискам конфиденциальности.

Исследователи изучили (PDF) восемь решений, которые активно развивались или обновлялись в 2025 году.

В выборку вошли ChatGPT Agent, Google Project Mariner, Amazon Nova Act, Perplexity Comet, Browserbase Director, Browser Use, Claude Computer Use и Claude for Chrome. Итог получился тревожным: в каждом из продуктов нашли как минимум одну уязвимость, а всего зафиксировали 30 проблем.

Одна из ключевых претензий — архитектура таких агентов. В большинстве случаев языковая модель работает не на устройстве пользователя, а на серверах разработчика. Это означает, что данные о состоянии браузера, поисковых запросах и содержимом страниц передаются третьей стороне. Формально провайдеры обещают ограничения на использование этих данных, но на практике пользователю остаётся лишь доверять политике сервиса.

Дополнительный риск — устаревшие браузеры. В одном случае агент использовал версию браузера, отстававшую на 16 крупных релизов, с уже известными уязвимостями. Такой софт может быть легко атакован через вредоносный сайт.

 

Ещё одна проблема — отношение агентов к опасным сайтам. Многие из них игнорируют стандартные браузерные предупреждения. В ходе тестов шесть из восьми агентов никак не сообщили пользователю, что открытая страница входит в списки фишинговых ресурсов. В результате ИИ может спокойно продолжать «выполнять задачу» — вплоть до ввода логинов и паролей на поддельных страницах.

Нашлись и проблемы с TLS-сертификатами: некоторые агенты не предупреждали об отозванных, просроченных или самоподписанных сертификатах. В одном случае модель просто «кликнула» предупреждение и продолжила работу, что открывает путь к атакам типа «Человек посередине».

 

Исследование показало, что браузерные агенты могут ослаблять защиту от межсайтового трекинга. Часть решений некорректно изолирует сторонние данные вроде cookies, что упрощает отслеживание активности пользователя на разных сайтах. Некоторые агенты по умолчанию сохраняют профильные данные — причём не всегда уведомляя об этом и не предлагая способ очистки.

Автоматизация доходит и до диалогов конфиденциальности. В тестах несколько агентов самостоятельно нажимали «Принять все cookies», даже когда рядом была кнопка «Отклонить». В одном случае это делалось ради продолжения задачи, в другом — из-за расширения, автоматически подавляющего cookie-баннеры.

С разрешениями на уведомления ситуация тоже неоднозначная: один агент просто выдавал доступ без спроса, другие игнорировали запросы, если могли продолжить работу, или действовали по стандартным настройкам браузера.

Самые чувствительные находки касаются утечек персональных данных. Исследователи дали агентам вымышленную личность и проверили, будут ли они делиться этой информацией с сайтами. Результат — шесть уязвимостей, связанных с раскрытием данных.

Некоторые агенты передавали информацию даже когда это не требовалось для выполнения задачи. В ход шли имейл-адреса, почтовые индексы, демографические данные, а в одном случае агент попытался отправить номер банковской карты. Были и примеры, когда ZIP-код вычислялся по IP-адресу и использовался для доступа к «локальным ценам».

Когда данные всё же не передавались, агенты либо подставляли заглушки, либо прямо сообщали, что информация недоступна — даже если это мешало завершить задачу.

Авторы исследования подчёркивают: проблема не в самой идее browser agents, а в том, как они спроектированы. Они советуют разработчикам активнее привлекать специалистов по приватности, регулярно прогонять решения через автоматизированные тесты и аккуратнее обращаться с механизмами защиты, которые уже есть в браузерах.

RSS: Новости на портале Anti-Malware.ru