InfoWatch планирует выпустить продукт класса UEBA

InfoWatch планирует выпустить продукт класса UEBA

InfoWatch планирует выпустить продукт класса UEBA

Группа компаний InfoWatch на форуме GISEC-2018 в Дубае, ОАЭ, анонсировала выход продукта InfoWatch Prediction в классе UEBA (User and Entity Behavior Analytics). Аналитический инструмент предназначен для автоматизированного решения прикладных задач на основе прогнозирования рисков информационной безопасности, которые связаны с кадровой и финансовой политикой, выявлением инсайдерства, компрометации учетных записей, а также другими критичными с точки зрения управления персоналом процессами в организации. Базовым сценарием в первой версии продукта стало заблаговременное определение системой сотрудников, которые собираются уволиться. Коммерческий релиз решения запланирован на 2018 год.

«Идеология InfoWatch Prediction нацелена на решение конкретных задач в области корпоративной информационной безопасности с возможностью проверки результата, — рассказал Андрей Арефьев, руководитель направления перспективных разработок ГК InfoWatch. — Ключевой особенностью нашего продукта является то, что он построен на строгой математической модели и позволяет предотвращать конкретные риски, а также проверить точность работы решения. Мы предоставляем компании инструмент, который позволяет с высокой точностью заблаговременно определить сотрудников, которые планируют покинуть штат, и тем самым минимизировать сопряженные с этим риски информационной безопасности». 

Решение анализирует информационные потоки компании (Big Data) и на основании моделей, построенных с применением методов машинного обучения, вычисляет вероятность увольнения сотрудников компании. InfoWatch Prediction рассчитывает индивидуальный рейтинг каждого сотрудника, который может быть положительным или отрицательным. Положительный рейтинг свидетельствует о том, что человек находится в зоне риска, и чем выше показатель, тем больше вероятность его ухода.

InfoWatch Prediction прошел необходимые испытания в инфраструктуре ряда крупных компаний, ежедневно анализируя десятки тысяч событий. По проведенным промышленным испытаниям точность определения сотрудников, которые собираются уволиться, составила 90%. Помимо этого, продукт позволяет заказчику быстро убедиться в эффективности оценки на основании ретроспективной выборки данных. 

«Мы можем продемонстрировать клиенту работоспособность системы почти мгновенно, хотя большинству других продуктов в области информационной безопасности требуются месяцы для сбора доказательств эффективности, и клиент вынужден тратить на это свои ресурсы: оборудование, время, деньги, — сообщил Андрей Арефьев. — Продукту достаточно лишь проанализировать данные, полученные с  почтового сервера или DLP-системы в компании за последний год, после чего он определяет уволившихся сотрудников, и у клиента есть возможность сравнить этот результат с реальными данными из отдела кадров». 

Для офицера безопасности организации выявление увольняющегося сотрудника позволяет применить специальные настройки политик безопасности, установить дополнительный контроль к его действиям и коммуникациям. Кроме того, решение позволяет не только минимизировать риски ИБ, но и будет полезно для реализации управленческого, финансового и кадрового учета в компании. 

По словам Андрея Арефьева, издержки от потери работника для организации равны его годовому окладу. Они складываются из многих факторов: низкой эффективности работы сотрудника, намеревающегося уволиться, различных выплат при его уходе, ресурсов и времени, потраченных на поиск новых кадров, а также их последующую адаптацию, добавил он. 

Также в рамках форума GISEC-2018 специалисты InfoWatch представили международный учебный центр цифровых технологий и кибербезопасности для стран Ближнего Востока, который направлен на подготовку и повышение квалификации специалистов в области информационной безопасности, интернета вещей, анализа больших данных, искусственного интеллекта, технологии блокчейн и прочих.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Сбер разработал комплексную модель угроз для ИИ

Эксперты Сбера разработали модель угроз для искусственного интеллекта (включая генеративный ИИ), охватывающую все этапы жизненного цикла таких систем — от подготовки данных до интеграции в приложения.

Документ опубликован на портале киберграмотности Сбера «Кибрарий». Он не привязан к конкретной отрасли и предназначен для оценки потенциальных уязвимостей, адаптации защитных механизмов и минимизации рисков.

В исследовании описаны 70 угроз, связанных с применением как предиктивных, так и генеративных моделей ИИ. Особое внимание уделено рискам, возникающим при использовании генеративных систем, чье распространение стремительно растёт. Для каждой угрозы определены затрагиваемые свойства информации — конфиденциальность, целостность и доступность, а также объекты воздействия, будь то обучающие датасеты или модели с открытым исходным кодом. Модель включает схему взаимодействия таких объектов и их детальное описание.

«Сбер активно применяет технологии искусственного интеллекта в бизнес-процессах и глубоко понимает возникающие угрозы. В ответ на эти вызовы мы создали первую в России модель киберугроз, охватывающую весь спектр рисков, связанных с разработкой и использованием ИИ. Этот документ позволит организациям любой сферы — от финансов до госструктур и промышленности — системно оценивать уязвимости, настраивать защитные меры и снижать возможные потери», — отметил вице-президент Сбера по кибербезопасности Сергей Лебедь.

Ключевые риски при использовании ИИ — это принятие ошибочных решений и утечки данных, использованных при обучении моделей. Кроме того, ИИ активно используют киберпреступные группировки в своих целях.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru