Уязвимость Monero позволяла украсть огромное количество средств

Уязвимость Monero позволяла украсть огромное количество средств

Уязвимость Monero позволяла украсть огромное количество средств

Разработчики криптовалюты Monero вчера выпустили патч, который устраняет серьезную уязвимость в коде платформы. Используя этот недостаток безопасности, злоумышленники могли незаконно получить средства криптовалютных бирж. Проблема крылась в том, как биржевые платформы Monero обрабатывали входящие транзакции.

О баге стало известно, когда пользователь задал теоретический вопрос на форуме Reddit в ветке, посвященной Monero. Пользователь спрашивал — что случится, если кто-то отправит множество транзакций на stealth-адрес (адрес-невидимка).

В криптовалютном мире адреса-невидимки используются для создания дополнительного уровня конфиденциальности. Отправляющий средства пользователь может указать получателю создать одноразовый адрес-невидимку. Этот адрес передает по цепочке средства на реальный адрес получателя.

Разработчики Monero, пытаясь ответить на вопрос пользователя, осознали, что коде присутствует серьезная уязвимость, которая затрагивает процесс обработки адресов-невидимок. Злоумышленник мог заставить биржу создать адрес-невидимку, а затем отправить одну монету Monero (XMR) 1000 раз.

Затем атакующий получал эквивалентную этому сумму в другой цифровой валюте — Bitcoin. Таким образом, если бы киберпреступники обнаружили этот баг первыми, они смогли бы вывести огромное количество средств буквально за считанные секунды.

С выпуском версии кода v0.12.3.0 уязвимость была устранена.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru