Новая версия Solar inCode эффективнее борется с ложными срабатываниями

Новая версия Solar inCode эффективнее борется с ложными срабатываниями

Новая версия Solar inCode эффективнее борется с ложными срабатываниями

Компания Ростелеком-Solar, национальный провайдер сервисов и технологий для защиты информационных активов, целевого мониторинга и управления информационной безопасностью, выпустила новую версию решения для контроля защищенности исходного кода приложений. В Solar inCode 2.10 встроен усовершенствованный модуль Fuzzy Logic Engine, который задает новый отраслевой стандарт в области борьбы с ложными срабатываниями. Кроме того, в вышедшей версии запущено бета-тестирование абсолютно нового, полностью переработанного интерфейса решения.

Модуль Fuzzy Logic Engine – технологическое ноу-хау компании Ростелеком-Solar, созданное для минимизации количества ложных срабатываний (False Positive) и пропуска уязвимостей в коде (False Negative). Он использует математический аппарат нечеткой логики, который позволяет определить вероятность ложного срабатывания в текущем проекте, основываясь на результатах прошлых сканирований. Параметры работы фильтров модуля Fuzzy Logic Engine определяются базой знаний, которая постоянно пополняется по результатам проведенных проектов.

«Количество ложных срабатываний и пропусков уязвимостей – один из ключевых параметров эффективности любого анализатора кода, поэтому технологическое развитие Fuzzy Logic Engine имеет для нас высокий приоритет. Заложенные в нем алгоритмы – это результат многолетних научных разработок, и за каждым обновлением стоит большой объем исследований. Этот модуль был реализован в продукте еще три года назад, но только сейчас удалось серьезно усовершенствовать технологию и выпустить крупное обновление», – рассказал Даниил Чернов, руководитель направления Solar inCode компании Ростелеком-Solar.

В версии Solar inCode 2.10 офицер безопасности может настроить отображение результатов сканирования с учетом вероятности ложного срабатывания, что существенно сокращает время, необходимое для обработки отчета и постановки разработчикам задач по исправлению ошибок и уязвимостей в коде. Кроме того, пользователь впервые получает возможность работать с фильтрами Fuzzy Fuzzy Logic Engine напрямую для достижения еще более высокой точности результатов.

Однако какой бы сложной ни была технология, Ростелеком-Solar всегда стремится преподнести ее пользователю в простом и понятном виде. Поэтому в Solar inCode 2.10 запущено бета-тестирование принципиально нового, полностью переработанного графического интерфейса, финальный вариант которого будет представлен в следующей версии решения. В Solar inCode 2.10 пользователи по умолчанию будут видеть привычный интерфейс, но для тех, кто захочет протестировать новый и прислать свои отклики и идеи, реализована кнопка переключения.

В Solar inCode 2.10 добавлены новые правила для поиска уязвимостей для поддерживаемых языков программирования, в особенности для Groovy и Kotlin, поддержка которых была реализована в предыдущей версии решения. Отдельно были доработаны алгоритмы анализа при поиске уязвимостей для языков C/C++.

Для сокращения продолжительности сканирования приложений, написанных на языке JavaScript, в новую версию Solar inCode встроена функциональность по анализу их состава. Решение определяет используемые внешние библиотеки и позволяет исключить их из анализа.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Сбер разработал комплексную модель угроз для ИИ

Эксперты Сбера разработали модель угроз для искусственного интеллекта (включая генеративный ИИ), охватывающую все этапы жизненного цикла таких систем — от подготовки данных до интеграции в приложения.

Документ опубликован на портале киберграмотности Сбера «Кибрарий». Он не привязан к конкретной отрасли и предназначен для оценки потенциальных уязвимостей, адаптации защитных механизмов и минимизации рисков.

В исследовании описаны 70 угроз, связанных с применением как предиктивных, так и генеративных моделей ИИ. Особое внимание уделено рискам, возникающим при использовании генеративных систем, чье распространение стремительно растёт. Для каждой угрозы определены затрагиваемые свойства информации — конфиденциальность, целостность и доступность, а также объекты воздействия, будь то обучающие датасеты или модели с открытым исходным кодом. Модель включает схему взаимодействия таких объектов и их детальное описание.

«Сбер активно применяет технологии искусственного интеллекта в бизнес-процессах и глубоко понимает возникающие угрозы. В ответ на эти вызовы мы создали первую в России модель киберугроз, охватывающую весь спектр рисков, связанных с разработкой и использованием ИИ. Этот документ позволит организациям любой сферы — от финансов до госструктур и промышленности — системно оценивать уязвимости, настраивать защитные меры и снижать возможные потери», — отметил вице-президент Сбера по кибербезопасности Сергей Лебедь.

Ключевые риски при использовании ИИ — это принятие ошибочных решений и утечки данных, использованных при обучении моделей. Кроме того, ИИ активно используют киберпреступные группировки в своих целях.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru