Kaspersky запатентовала технологию на базе машинного обучения для MLAD

Kaspersky запатентовала технологию на базе машинного обучения для MLAD

Kaspersky запатентовала технологию на базе машинного обучения для MLAD

Важное событие для компании «Лаборатория Касперского» — антивирусный гигант запатентовал технологию на базе машинного обучения, которая поможет мониторить промышленные установки и другое сложное оборудование.

Российская федеральная служба Роспатент выдала патент под номером 2724716, подтверждающий уникальность разработки и авторство экспертов.

По словам представителей «Лаборатории Касперского», технология станет базой для Kaspersky Machine Learning for Anomaly Detection (MLAD) — детектора аномалий, который будет на раннем этапе выявлять и останавливать кибератаки, предотвращать отказы оборудования, сбои технологических процессов и разбираться с другими критическими ситуациями на производстве.

Kaspersky MLAD на голову выше классических систем мониторинга, поскольку последние используют жёстко заданные параметры, что ограничивает возможности операторов объекта.

Детектор аномалий от «Лаборатории Касперского» может анализировать взаимосвязь сигналов телеметрии, фиксировать их поведение и предсказывать технологические показатели на некоторое время вперёд.

Если Kaspersky MLAD выявит разницу между прогнозируемыми и фактическими значениями, которая превышает определённый порог, система сразу же сообщит об отклонении.

Узнать подробнее о детекторе аномалий можно по этой ссылке.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Активность фишеров за месяц возросла на 17% за счет использования ИИ

Согласно статистике KnowBe4, в феврале 2025 года число фишинговых писем возросло на 17% в сравнении с показателями шести предыдущих месяцев. Основная масса таких сообщений (82%) содержала признаки использования ИИ.

Подобная возможность, по словам экспертов, позволяет усилить полиморфизм атак фишеров — рандомизацию заголовков, содержимого, отправителей поддельных писем.

Незначительные изменения, на лету привносимые ИИ, позволяют с успехом обходить традиционные средства защиты — блок-листы, статический сигнатурный анализ, системы защиты класса SEG.

По данным KnowBe4, больше половины полиморфных фишинговых писем (52%) рассылаются с взломанных аккаунтов. Для обхода проверок подлинности отправителя злоумышленники также используют фишинговые домены (25%) и веб-почту (20%).

Более того, использование ИИ позволяет персонализировать сообщения-ловушки за счет динамического (в реальном времени) сбора информации об адресатах из открытых источников, а также сделать их настолько убедительными, что получатель даже не заподозрит подвох.

По данным KnowBe4, активность фишеров, освоивших новые возможности, за год возросла на 53%. Рост количества случаев использования ИИ в атаках отметили и другие эксперты. Для эффективного противодействия новой угрозе нужны более совершенные ИБ-инструменты — скорее всего, на основе того же ИИ.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru