Smart Fraud Detection теперь борется с фродом в бонусных системах

Smart Fraud Detection теперь борется с фродом в бонусных системах

Smart Fraud Detection теперь борется с фродом в бонусных системах

Компания Фаззи Лоджик Лабс представила новую функцию антифрод системы Smart Fraud Detection для борьбы с мошенничеством в бонусных системах и с картами лояльности. Решение основано на сочетании метода правил, машинного обучения и работе с профилями объектов.

Правила настраиваются по маркированию подозрительной активности или известными шаблонам атак используя параметры конкретных действий клиента и/или сотрудника и анализ динамически рассчитываемых объектов. Методы машинного обучения позволяют эффективно выявлять аномалии в поведении клиентов и сотрудников организации, не требуя длительной настройки и поддержки, автоматически адаптируются к изменяющемся шаблонам атак злоумышленников.

Работа с динамическими профилями включает в себя объекты хранения для описания неограниченного количества элементов и и массивы максимального количества/заданной глубины данных. Это позволяет:

  • строить профили объектов: пользователь, пользовательское устройство, карта, геолокация события, сотрудник, магазин, вид покупки и т.п.;
  • отслеживать типичные и нетипичные параметры, наиболее важные и частые взаимодействия между объектами;
  • профилировать на основании операций с «движением баллов» и прочих событий (например, изменение персональных данных, регистрация мобильного приложения).

Для защиты программ лояльности крупных ритейлеров, банков, девелоперов, компания Фаззи Лоджик Лабс использует отработанные технологии для контроля внешнего и внутреннего мошенничества в финансовом секторе. Атаки на программы лояльности не менее разнообразны и изощренны, чем мошенничество в банковских системах. В них задействованы не только внешние «акторы», но и, во многих случаях, сами сотрудники организации.

Недавно мы писали, что разработчики добавили в Smart Fraud Detection дополнительные параметры транзакции.

Минцифры создаст полигон для тестирования систем с ИИ на безопасность

Минцифры планирует создать киберполигон для тестирования систем с искусственным интеллектом (ИИ) на безопасность. В первую очередь речь идёт о решениях, предназначенных для применения на объектах критической инфраструктуры, а также о системах с функцией принятия решений.

О том, что министерство ведёт работу над созданием такого полигона, сообщил РБК со ссылкой на несколько источников.

Площадка будет использоваться для тестирования ИИ-систем, которые в дальнейшем должны пройти сертификацию ФСТЭК и ФСБ России. Это предусмотрено правительственным законопроектом «О применении систем искусственного интеллекта органами, входящими в единую систему публичной власти, и внесении изменений в отдельные законодательные акты».

Документ вводит четыре уровня критичности ИИ-систем:

  • минимальный — влияние на безопасность отсутствует или минимально;
  • ограниченный;
  • высокий — относится к системам, используемым на объектах критической информационной инфраструктуры;
  • критический — системы, способные угрожать жизни и здоровью людей или безопасности государства, а также автономные комплексы, принимающие самостоятельные решения.

Определять уровень критичности будет Национальный центр искусственного интеллекта в сфере госуправления при правительстве. Эта же структура займётся ведением реестра сертифицированных ИИ-систем.

Конкретные требования к сертификации планируется закрепить в отдельных нормативных документах, которые пока находятся в разработке. На текущем этапе единственным обязательным условием является включение программного обеспечения в реестр Минцифры.

По данным «Российской газеты», распространять новые требования на коммерческие ИИ-решения не планируется. При этом в аппарате первого вице-премьера Дмитрия Григоренко пояснили, что ключевая цель законопроекта — снизить риски применения ИИ в сферах с высокой ценой ошибки, включая здравоохранение, судопроизводство, общественную безопасность и образование.

RSS: Новости на портале Anti-Malware.ru