EarSpy — новый метод прослушки Android-устройств через датчики движения

EarSpy — новый метод прослушки Android-устройств через датчики движения

EarSpy — новый метод прослушки Android-устройств через датчики движения

Группа исследователей разработала вектор атаки на Android-смартфоны, с помощью которого можно прослушивать голосовые вызовы. В определённых случаях метод позволяет определить пол и личность владельца мобильного устройства.

Техника получила имя EarSpy, она представляет собой разновидность атаки по сторонним каналам. Прослушка осуществляется с помощью чтения данных датчиков движения, которые удаётся получить благодаря реверберации от динамиков девайса.

Немалую роль в успехе играют современные модели смартфонов EarSpy. Если сравнивать с тем, что выпускали несколько лет назад, в актуальных устройствах установлены более мощные динамики. Это играет на руку новому вектору атаки.

Также стоит отметить более современные датчики движения и гироскопы, который теперь могут фиксировать даже малейший резонанс от динамиков. Для сравнения моделей смартфонов исследователи опубликовали результаты работы спикеров в OnePlus 3T (вышел в 2016 году) и OnePlus 7T (вышел в 2019-м). Обратите внимание, что последний выдаёт намного больше данных:

 

Специалисты задействовали стороннее приложение «Physics Toolbox Sensor Suite» для отслеживания данных акселерометра в процессе сымитированного звонка. МО-алгоритм использовался для чтения данных и распознавания речи в потоке звуков. Результаты на смартфоне OnePlus 7T получились такими: пол говорящего угадывался в 77,7-98,7% случаев, речь распознавалась в 51,8-56,4% случаев.

 

У OnePlus 9 результаты отличались: определение пола — 88,7% случаев, распознавание речи — 33,3-41,6%.

 

Подробности EarSpy эксперты опубликовали в специальном отчёте (PDF).

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Активность фишеров за месяц возросла на 17% за счет использования ИИ

Согласно статистике KnowBe4, в феврале 2025 года число фишинговых писем возросло на 17% в сравнении с показателями шести предыдущих месяцев. Основная масса таких сообщений (82%) содержала признаки использования ИИ.

Подобная возможность, по словам экспертов, позволяет усилить полиморфизм атак фишеров — рандомизацию заголовков, содержимого, отправителей поддельных писем.

Незначительные изменения, на лету привносимые ИИ, позволяют с успехом обходить традиционные средства защиты — блок-листы, статический сигнатурный анализ, системы защиты класса SEG.

По данным KnowBe4, больше половины полиморфных фишинговых писем (52%) рассылаются с взломанных аккаунтов. Для обхода проверок подлинности отправителя злоумышленники также используют фишинговые домены (25%) и веб-почту (20%).

Более того, использование ИИ позволяет персонализировать сообщения-ловушки за счет динамического (в реальном времени) сбора информации об адресатах из открытых источников, а также сделать их настолько убедительными, что получатель даже не заподозрит подвох.

По данным KnowBe4, активность фишеров, освоивших новые возможности, за год возросла на 53%. Рост количества случаев использования ИИ в атаках отметили и другие эксперты. Для эффективного противодействия новой угрозе нужны более совершенные ИБ-инструменты — скорее всего, на основе того же ИИ.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru