В Донском государственном техническом университете (ДГТУ, Ростов-на-Дону) создали программу для распознавания видеоконтента, сгенерированного с помощью ИИ. Софт весом 100 Кбайт работает на Windows 7 и выше и выявляет дипфейки с приемлемой точностью.
Программа написана на Python 3.11 в среде разработки IDE Microsoft Visual Studio на архитектуре Inception. Для распознавания лиц была применена модель BlazeFace нейронных сетей ResNeXt и XceptionsNet, которые обучили на Google Cloud Platform.
Инструмент прост в использовании: достаточно скачать подозрительное видео и запустить проверку через командную строку. Программа найдет все кадры с лицами и проанализирует каждый на наличие признаков подделки. Так, дипфейк могут выдать натяжение губ при разговоре, расхождение речи и мимики, а также различные технические нюансы, вплоть до неестественно расположенных пикселей.
Извлеченные из оригинала характеристики обрабатываются генеративно-состязательной сетью (Generative Adversarial Network, GAN). Для вывода предусмотрены три варианта:
- наложенный на видео вердикт Fake/No Fake;
- текстовое сообщение с указанием вероятности подделки (в процентах);
- отображаемые в командной строке покадровые оценки с указанием степени вероятности фейка.
«Стопроцентный результат не гарантирован: у любой программы бывают неточности, — подчеркивают разработчики. — Это связано и с особенностями мимики человека на видео, и с характеристиками самого видео: иногда такие ролики специально делают с плохим качеством, чтобы труднее было определить подделку».
В настоящее время создатели антифейковой программы завершают оформление свидетельства о госрегистрации продукта, правообладателем которого является ДГТУ. По мнению разработчиков, их инструмент будет востребован в сфере цифровой безопасности, в том числе у создателей бесконтактных систем контроля доступа и разблокировки гаджетов.
«Программа по выявлению фейкового видеоконтента станет одним из модулей будущего программного комплекса по противодействию деструктивной информации, — делится дальнейшими планами научный руководитель проекта, профессор Лариса Черкесова. — Эта система позволит охватить все виды мультимедийного контента в интернете: тексты — как печатные, так и рукописные, графические изображения, включая фото- и видеофайлы, а также аудиофайлы».
Из зарубежных разработок такого плана наиболее интересен, пожалуй, FakeCatcher разработки Intel — серверный детектор, способный распознавать дипфейк-видео в реальном времени с точностью до 96%. От большинства аналогов его отличает подход: он ищет признаки, свойственные человеку, а не отличия, выдающие подлог.