Баги Facebook открывали доступ к спискам друзей и банковским картам

Баги Facebook открывали доступ к спискам друзей и банковским картам

Баги Facebook открывали доступ к спискам друзей и банковским картам

В прошлом году исследователь безопасности Йосип Франкович обнаружил баги в приложении Facebook, которые открывали доступ к закрытым спискам друзей и частично показывали информацию о банковских картах пользователей. На этой неделе он раскрыл детали обнаружения и исправления уязвимостей.

Франкович анализировал приложение Facebook для Android и обнаружил уязвимость, которая позволила ему получить доступ к списку друзей любого пользователя с помощью специально созданного запроса. Хотя пользователи Facebook могут запретить другим людям видеть своих друзей, уязвимость позволяла получить эту информации, независимо от настроек конфиденциальности.

Для своих мобильных приложений Facebook разработал GraphQL — язык запросов данных с открытым кодом. Запросы GraphQL можно использовать только для приложений Facebook — причем разрешены идентификаторы запросов только из белого списка — и для них требуется токен доступа.

Франкович обнаружил, что можно использовать клиентский токен из приложения Facebook для Android и обойти белый список, отправив запрос, содержащий параметр “doc_id” вместо “query_id”. После этого он стал отправлять запросы GraphQL и увидел, что запрос под названием CSPlaygroundGraphQLFriendsQuery раскрывал список друзей пользователя, чей ID был включен в запрос.

Вторая уязвимость, открытая экспертом, также была связана с GraphQL. Она позволяла потенциальным злоумышленникам получить информацию о платежной карте клиента, привязанной к аккаунту Facebook. Для этого нужно было отправить запрос, содержащий ID целевого пользователя и токен доступа, который можно было получить из приложения Facebook. Эта уязвимость раскрывала первые 6 и последние 4 цифры банковской карты, дату выпуска, тип карты, имя держателя, zip code и страну. Пользователи обычно вводят данные банковских карт на Facebook для оплаты рекламы.

Франкович сообщил Facebook о первой уязвимости 6 октября 2017 года, недостаток был исправлен к середине месяца. Баг с платежными данными обнаружился в феврале того же года и был исправлен в рекордные сроки — за 4 часа 13 минут. В начале этой недели исследователь написал об обнаруженных багах в своем блоге. Франкович не пожелал называть сумму, которую Facebook заплатил ему за обнаружение ошибок.

Ранее в этом году мы писали о том, как киберпреступники взломали Facebook-аккаунт президента Болгарии и о том, как социальная сеть атаковала своих пользователей потоками спама.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

Киберпреступники применяют ИИ в половине техник кибератак

Как показало исследование Positive Technologies, киберпреступники начали активно внедрять искусственный интеллект (ИИ) в свою деятельность. Уже в самом ближайшем будущем киберпреступники смогут найти ИИ применение во всех тактиках из базы MITRE ATT&CK, а также в 59% ее техник.

Как отмечают авторы исследования, до недавнего времени злоумышленники применяли ИИ не очень активно: он использовался лишь в 5% техник MITRE ATT&CK и еще для 17% применение такого инструментария признавалось перспективным.

Все изменило появление больших языковых моделей (LLM) и инструментов вроде ChatGPT, которые легальны и общедоступны. После выхода ChatGPT 4 количество фишинговых атак за год выросло в 13 раз.

Как особо обратили внимание аналитики, популярности инструментов ИИ у киберпреступников способствует также тот факт, что LLM не имеют ограничений, которые бы препятствовали генерации с их помощью вредоносного кода или инструкций. В итоге такие инструменты довольно широко используются для создания различных программных зловредов.

Обращение к большим языковым моделям помогает начинающим киберпреступникам,  ускорять подготовку к атакам. Злоумышленник может с их помощью уточнить, не упустил ли он чего-то или изучить различные подходы к реализации определенных шагов в ходе той иной акции.

Продвинутые инструменты поиска помогут начинающему злоумышленнику подобрать необходимую информацию и найти ответы на базовые вопросы. Особенно авторы исследования обращают внимание на ситуацию в развивающихся странах, где компании и госучреждения защищены хуже.

Среди методов атак, где малоопытные злоумышленники применяют ИИ наиболее широко, авторы исследования выделили фишинг, социальную инженерию, атаки на веб-приложения и слабые пароли, SQL-инъекции, а также сетевой сниффинг. Они не требуют глубоких технических знаний и их легко осуществлять с помощью публично доступных инструментов.

Благодаря ИИ уже на текущем уровне технологий можно автоматически генерировать фрагменты вредоносного кода, фишинговые сообщения, разного рода дипфейки, которые делают более убедительными привычные сценарии атак социальной инженерии, автоматизировать отдельные этапы кибератак, среди которых авторы исследования особо выделили управление ботнетами. Однако развить и создать новые инструменты ИИ для автоматизации и масштабирования кибератак пока могут только опытные злоумышленники.

«Пока что ни об одной атаке нельзя сказать, что она была полностью проведена искусственным интеллектом. Тем не менее мир информационной безопасности постепенно движется к автопилотированию как в защите, так и в атаке. Мы прогнозируем, что с течением времени киберпреступные инструменты и модули с ИИ будут объединяться в кластеры для автоматизации все большего числа этапов атаки, пока не смогут покрыть большую часть шагов», — предупреждают авторы исследования.

 

Если злоумышленникам удастся автоматизировать проведение атак на выбранную цель, следующим шагом может стать применение инструментов для самостоятельного поиска целей. Опытным киберпреступникам ИИ даст инструментарий для сбора данных о потенциальных жертвах из разных источников, причем в короткие сроки.

ИИ активно применяется при эксплуатации уязвимостей, причем потенциал данных инструментов реализован еще далеко не полностью. ИИ помогает создавать ботов, с высокой степенью точности имитирующих поведение людей. Активно используются в ходе атак и дипфейки, которые уже достигли довольно высокого уровня правдоподобия. Их применяют в ходе атак как на обычных людей, так и на компании.

«Высокий потенциал искусственного интеллекта в кибератаках — не повод для паники, — комментирует ситуацию аналитик исследовательской группы департамента аналитики Positive Technologies Роман Резников. — Нужно реалистично смотреть в будущее, изучать возможности новых технологий и системно заниматься обеспечением результативной кибербезопасности. Логичная контрмера атакующему ИИ — более эффективный ИИ в защите, который поможет преодолеть нехватку специалистов для защиты от кибератак через автоматизацию многих процессов».

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru