Киберпреступники используют GitHub для размещения фишинговых ресурсов

Киберпреступники используют GitHub для размещения фишинговых ресурсов

Киберпреступники используют GitHub для размещения фишинговых ресурсов

С середины 2017 года злоумышленники использовали GitHub для размещения фишинговых веб-сайтов. Об этом говорит отчет, предоставленный компанией Proofpoint, занимающейся защитой от утечек данных.

По словам исследователей, фишеры располагали свои сайты в каноничном домене $github_username.github.io, при этом используя графику какого-нибудь известного бренда, чтобы ввести пользователей в заблуждение.

HTML-код был незначительно обфусцирован, чтобы скрыть истинное его назначение. В действительности же он отправлял учетные данные в запросе HTTP POST на другой сайт.

«Отправка украденных учетных данных на другой скомпрометированный сайт — отличительная черта всех фишинговых ресурсов, обнаруженных нами в github.io», — пишут эксперты Proofpoint.

«Более того, похоже на то, что фишеры не использовали традиционные PHP-методы, так как платформа github.io не предоставляет такой возможности».

В некоторых случаях домен github.io использовался для перенаправления трафика, это делалось для того, чтобы продлить жизнь фишинговой страницы.

Специалисты Proofpoint вычислили имя пользователя, который модифицировал файлы в затронутых репозиториях, — «greecpaid». Несмотря на то, что аккаунт этого пользователя неактивен в сервисе GitHub, ему недавно удалось обновить некоторые фишинговые ресурсы.

Все вычисленные аккаунты GitHub, занимавшиеся вредоносной деятельностью, были заблокированы 19 апреля.

В марте стало известно, что Университет штата Северная Каролина (NCSU) на протяжении шести месяцев сканировал миллиарды файлов, размещенные в публичных репозиториях GitHub. Как показали результаты, более 100 000 репозиториев «сливали» API-токены и криптографические ключи.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

Новая ИИ-модель копирует собеседника путем проведения опроса

Исследователи из трех американских университетов и команды Google DeepMind создали модель генеративного ИИ, способную после двухчасового аудиоинтервью сымитировать личность и поведение собеседника с точностью до 85%.

В контрольную выборку вошли 1052 добровольца разного возраста, пола, образования, достатка, национальности, вероисповедания и политических взглядов. Для всех были созданы индивидуальные программы-агенты одинаковой архитектуры.

Разработанный сценарий бесед включал обычные для социологических исследований вопросы, тесты «Большая пятерка» для построения модели личности, пять экономических игр («Диктатор», «Общественное благо» и проч.) и поведенческую анкету, составленную в ходе недавних экспериментов с большими языковыми моделями (БЯМ, LLM).

Ответы испытуемых сохранялись в памяти для использования в качестве контекста. Спустя две недели добровольцам предложили пройти тот же опрос, и LLM смогла предугадать их реплики с точностью до 85%.

 

По мнению авторов исследования, их метод создания цифровых двойников — хорошее подспорье в изучении индивидуального и коллективного поведения. Полученные результаты также можно использовать в социологии и для выработки политических решений.

К сожалению, совершенствование ИИ-технологий — палка о двух концах. Попав в руки злоумышленников, подобный инструмент позволит создавать еще более убедительные дипфейки, чтобы вводить в заблуждение интернет-пользователей с корыстной либо иной неблаговидной целью.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru