Smart Fraud Detection теперь борется с фродом в бонусных системах

Smart Fraud Detection теперь борется с фродом в бонусных системах

Smart Fraud Detection теперь борется с фродом в бонусных системах

Компания Фаззи Лоджик Лабс представила новую функцию антифрод системы Smart Fraud Detection для борьбы с мошенничеством в бонусных системах и с картами лояльности. Решение основано на сочетании метода правил, машинного обучения и работе с профилями объектов.

Правила настраиваются по маркированию подозрительной активности или известными шаблонам атак используя параметры конкретных действий клиента и/или сотрудника и анализ динамически рассчитываемых объектов. Методы машинного обучения позволяют эффективно выявлять аномалии в поведении клиентов и сотрудников организации, не требуя длительной настройки и поддержки, автоматически адаптируются к изменяющемся шаблонам атак злоумышленников.

Работа с динамическими профилями включает в себя объекты хранения для описания неограниченного количества элементов и и массивы максимального количества/заданной глубины данных. Это позволяет:

  • строить профили объектов: пользователь, пользовательское устройство, карта, геолокация события, сотрудник, магазин, вид покупки и т.п.;
  • отслеживать типичные и нетипичные параметры, наиболее важные и частые взаимодействия между объектами;
  • профилировать на основании операций с «движением баллов» и прочих событий (например, изменение персональных данных, регистрация мобильного приложения).

Для защиты программ лояльности крупных ритейлеров, банков, девелоперов, компания Фаззи Лоджик Лабс использует отработанные технологии для контроля внешнего и внутреннего мошенничества в финансовом секторе. Атаки на программы лояльности не менее разнообразны и изощренны, чем мошенничество в банковских системах. В них задействованы не только внешние «акторы», но и, во многих случаях, сами сотрудники организации.

Недавно мы писали, что разработчики добавили в Smart Fraud Detection дополнительные параметры транзакции.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Сбер разработал комплексную модель угроз для ИИ

Эксперты Сбера разработали модель угроз для искусственного интеллекта (включая генеративный ИИ), охватывающую все этапы жизненного цикла таких систем — от подготовки данных до интеграции в приложения.

Документ опубликован на портале киберграмотности Сбера «Кибрарий». Он не привязан к конкретной отрасли и предназначен для оценки потенциальных уязвимостей, адаптации защитных механизмов и минимизации рисков.

В исследовании описаны 70 угроз, связанных с применением как предиктивных, так и генеративных моделей ИИ. Особое внимание уделено рискам, возникающим при использовании генеративных систем, чье распространение стремительно растёт. Для каждой угрозы определены затрагиваемые свойства информации — конфиденциальность, целостность и доступность, а также объекты воздействия, будь то обучающие датасеты или модели с открытым исходным кодом. Модель включает схему взаимодействия таких объектов и их детальное описание.

«Сбер активно применяет технологии искусственного интеллекта в бизнес-процессах и глубоко понимает возникающие угрозы. В ответ на эти вызовы мы создали первую в России модель киберугроз, охватывающую весь спектр рисков, связанных с разработкой и использованием ИИ. Этот документ позволит организациям любой сферы — от финансов до госструктур и промышленности — системно оценивать уязвимости, настраивать защитные меры и снижать возможные потери», — отметил вице-президент Сбера по кибербезопасности Сергей Лебедь.

Ключевые риски при использовании ИИ — это принятие ошибочных решений и утечки данных, использованных при обучении моделей. Кроме того, ИИ активно используют киберпреступные группировки в своих целях.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru