Система раннего обнаружения аномалий Kaspersky MLAD наконец вышла в релиз

Система раннего обнаружения аномалий Kaspersky MLAD наконец вышла в релиз

Система раннего обнаружения аномалий Kaspersky MLAD наконец вышла в релиз

«Лаборатория Касперского» сообщила, что систему Kaspersky Machine Learning for Anomaly Detection (MLAD) теперь может приобрести более широкий круг клиентов. Напомним, что Kaspersky MLAD позволяет обнаружить аномалии в технологическом процессе на самом раннем этапе.

Как подчёркивают разработчики, Kaspersky MLAD располагает алгоритмами машинного обучения, анализирующими телеметрию, поступающую с датчиков оборудования. Помимо этого, система обеспечивает клиентов многофункциональным графическим интерфейсом, благодаря которому проще детально анализировать аномалии.

Таким образом, Kaspersky MLAD может выявить целый ряд отклонений: перебои в работе оборудования, кибератаки, ошибки операторов и тому подобное. Эти функциональные возможности делают систему незаменимой в промышленности, где важно детектировать аномалию на самой ранней стадии.

Как подсчитали аналитики «Лаборатории Касперского», сокращение времени простоя даже на 50% позволяет крупной электростанции экономить до миллиона долларов в год. А нефтеперерабатывающий завод благодаря такому сокращению сбережёт и того больше — $2,5 миллиона.

За счёт работы нейронной сети Kaspersky MLAD способен анализировать телеметрию с различных датчиков, причём делать это в режиме реального времени. В итоге от системы не скроются даже незначительные отклонения — изменения динамики сигналов или корреляций. Также заказчик может сам добавить индивидуальные диагностические правила для конкретных случаев.

Стоит отметить и графический интерфейс Kaspersky MLAD, который отлично подходит для анализа выявленных отклонений. Диаграммы всех отслеживаемых процессов помогут экспертам увидеть, что именно пошло не так и в какой части системы.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Сбер разработал комплексную модель угроз для ИИ

Эксперты Сбера разработали модель угроз для искусственного интеллекта (включая генеративный ИИ), охватывающую все этапы жизненного цикла таких систем — от подготовки данных до интеграции в приложения.

Документ опубликован на портале киберграмотности Сбера «Кибрарий». Он не привязан к конкретной отрасли и предназначен для оценки потенциальных уязвимостей, адаптации защитных механизмов и минимизации рисков.

В исследовании описаны 70 угроз, связанных с применением как предиктивных, так и генеративных моделей ИИ. Особое внимание уделено рискам, возникающим при использовании генеративных систем, чье распространение стремительно растёт. Для каждой угрозы определены затрагиваемые свойства информации — конфиденциальность, целостность и доступность, а также объекты воздействия, будь то обучающие датасеты или модели с открытым исходным кодом. Модель включает схему взаимодействия таких объектов и их детальное описание.

«Сбер активно применяет технологии искусственного интеллекта в бизнес-процессах и глубоко понимает возникающие угрозы. В ответ на эти вызовы мы создали первую в России модель киберугроз, охватывающую весь спектр рисков, связанных с разработкой и использованием ИИ. Этот документ позволит организациям любой сферы — от финансов до госструктур и промышленности — системно оценивать уязвимости, настраивать защитные меры и снижать возможные потери», — отметил вице-президент Сбера по кибербезопасности Сергей Лебедь.

Ключевые риски при использовании ИИ — это принятие ошибочных решений и утечки данных, использованных при обучении моделей. Кроме того, ИИ активно используют киберпреступные группировки в своих целях.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru