Google: Более 35 000 Java-пакетов уязвимы перед Log4Shell

Google: Более 35 000 Java-пакетов уязвимы перед Log4Shell

Google: Более 35 000 Java-пакетов уязвимы перед Log4Shell

Команда Google просканировала крупнейший на сегодняшний день репозиторий Java-пакетов — Maven Central и пришла к выводу, что 35 863 пакета используют уязвимые версии библиотеки Apache Log4j. Таким образом, масштабы бреши Log4Shell продолжают удивлять экспертов.

Среди пакетов с проблемными версиями Log4j есть и те, что уязвимы перед самым первым эксплойтом для CVE-2021-44228 (Log4Shell). Однако часть пакетов страдает от второй выявленной бреши — CVE-2021-45046, приводящей к удалённому выполнению кода.

В отчёте команды Google Open Source Insights специалисты указывают на тот факт, что обычно серьёзная Java-уязвимость затрагивает лишь 2% пакетов в Maven Central. Судя по всему, с Log4Shell дела обстоят куда хуже, ведь 35 тыс. пакетов составляют около 8% от коллекции Maven Central.

Джейм Уэттер и Ники Рингленд из команды Google ещё раз подчеркнули важность обновить уязвимые пакеты и использовать пропатченную версию библиотеки, однако сами специалисты считают, что патчинг в отдельных случаях будет происходить годами, а рассчитывать на полное устранение брешей пакетов в Maven Central просто наивно.

Проблема в том, что Log4j не всегда включена в пакет как прямая зависимость, она также может быть зависимостью другой зависимости. В этом случае разработчики уязвимых пакетов должны ждать обновлений от других девелоперов, а этот процесс может затянуться.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Сбер разработал комплексную модель угроз для ИИ

Эксперты Сбера разработали модель угроз для искусственного интеллекта (включая генеративный ИИ), охватывающую все этапы жизненного цикла таких систем — от подготовки данных до интеграции в приложения.

Документ опубликован на портале киберграмотности Сбера «Кибрарий». Он не привязан к конкретной отрасли и предназначен для оценки потенциальных уязвимостей, адаптации защитных механизмов и минимизации рисков.

В исследовании описаны 70 угроз, связанных с применением как предиктивных, так и генеративных моделей ИИ. Особое внимание уделено рискам, возникающим при использовании генеративных систем, чье распространение стремительно растёт. Для каждой угрозы определены затрагиваемые свойства информации — конфиденциальность, целостность и доступность, а также объекты воздействия, будь то обучающие датасеты или модели с открытым исходным кодом. Модель включает схему взаимодействия таких объектов и их детальное описание.

«Сбер активно применяет технологии искусственного интеллекта в бизнес-процессах и глубоко понимает возникающие угрозы. В ответ на эти вызовы мы создали первую в России модель киберугроз, охватывающую весь спектр рисков, связанных с разработкой и использованием ИИ. Этот документ позволит организациям любой сферы — от финансов до госструктур и промышленности — системно оценивать уязвимости, настраивать защитные меры и снижать возможные потери», — отметил вице-президент Сбера по кибербезопасности Сергей Лебедь.

Ключевые риски при использовании ИИ — это принятие ошибочных решений и утечки данных, использованных при обучении моделей. Кроме того, ИИ активно используют киберпреступные группировки в своих целях.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru