ИИ помог ученым извлечь звук из фото и немого видео

ИИ помог ученым извлечь звук из фото и немого видео

ИИ помог ученым извлечь звук из фото и немого видео

Метод, разработанный университетскими исследователями, позволяет получать аудиоданные из фотографий и видео, снятого с выключенным микрофоном. Созданный учеными ИИ-инструмент способен даже определить пол комментатора, созерцавшего фотосессию.

Концепция, нареченная Side Eye, предполагает использование стабилизатора изображения и механизма скользящего затвора, присутствующих во встроенных камерах многих современных телефонов. Созданный в ходе исследования инструмент использует средства машинного обучения, и его можно натренировать на аудиозаписях с тем, чтобы он научился распознавать часто употребляемые слова — например, «да» и «нет».

«Представьте себе, что кто-то снимает для TikTok видео, отключив звук, чтобы наложить музыку, — говорит профессор Кевин Фу (Kevin Fu) из Северо-Восточного университета в Бостоне. — А вдруг кому-нибудь захочется узнать, что сказал герой ролика? Вспомнил детский стишок про арбуз или выдал свой пароль? И о чем это шушукаются за его спиной? Все это можно выяснить».

Оказалось, что разговор рядом с объективом камеры вызывает слабые вибрации в стабилизаторе, компенсирующем дрожание рук при съемке. Угол света при этом почти незаметно изменяется.

Извлечь звуковую частоту из этих микровибраций трудно, однако задачу исследователям облегчил эффект скользящего затвора — когда сканирование пикселей происходит построчно, за сотни тысяч прогонов для каждого изображения. Это открывает возможность для детализации изменений, вызванных речью фотографа, его модели или наблюдателя.

По словам исследователей, Side Eye исправно работает даже с материалами, отснятыми при плохом освещении. Не смущают его и неудачные снимки вроде потолка во весь кадр, однако чем больше отображаемой информации, тем лучше.

На выходе вначале получались приглушенные звуки, похожие на человеческую речь. После обучения Side Eye начал извлекать больше полезной информации и стал узнавать людей по голосу — в тех случаях, когда образцы присутствовали в тренировочных наборах данных.

С точки зрения кибербезопасности подобные инструменты составляют потенциальную угрозу, однако их также можно использовать в криминалистике для получения цифровых свидетельств. Так, например, обработанная по методу Side Eye запись с камеры видеонаблюдения сможет подтвердить или опровергнуть алиби подозреваемого в совершении преступления.

WhatsApp после YouTube пропал из DNS-сервера Роскомнадзора

Домен WhatsApp (принадлежит Meta, признанной экстремистской и запрещенной в России) исчез из записей Национальной системы доменных имен (НСДИ) — той самой инфраструктуры, которую развернули в рамках закона о «суверенном Рунете».

В результате устройства пользователей перестали получать IP-адреса для whatsapp[.]com и web.whatsapp[.]com, а доступ к мессенджеру для многих теперь возможен только через VPN.

Речь идет именно о доменных записях в НСДИ. Если DNS не возвращает корректный IP-адрес, приложение просто не может установить соединение с серверами.

При этом, как выяснил «КоммерсантЪ», технический домен whatsapp[.]net и короткие ссылки wa[.]me в системе пока сохраняются.

Похожая история накануне произошла с YouTube — его домен также пропал из НСДИ. Ранее аналогичным способом в России «отключали» Discord и Signal — тогда тоже использовались механизмы национальной DNS-инфраструктуры.

Формально это не выглядит как классическая блокировка по IP или через фильтрацию трафика. Но по факту эффект тот же: без альтернативных способов подключения сервис перестает работать.

Напомним, на днях российские власти приняли решение начать работу по замедлению мессенджера Telegram в России. При этом есть мнение, что Роскомнадзор экономит ресурсы, замедляя Telegram.

RSS: Новости на портале Anti-Malware.ru