78% промышленных компаний заместили менее 70% ПО для работы с данными

78% промышленных компаний заместили менее 70% ПО для работы с данными

78% промышленных компаний заместили менее 70% ПО для работы с данными

Согласно совместному исследованию К2Тех и Arenadata, 22% российских промышленных компаний достигли высокого уровня замещения (более 70%), а 78% — заместили менее 70% ПО.

В исследовании приняли участие 97 руководителей и директоров компаний из различных отраслей промышленности.

Как показал опрос, 82% промышленных предприятий стали больше доверять отечественному ПО для работы с данными. 40% готовы внедрять такие решения в процессы планирования, аналитики и оптимизации производственных процессов.

Доля отечественного ПО на предприятиях пока относительно невысокая. 78% предприятий заместили менее 70% решений по работе с данными. При этом большинство из них находятся в диапазоне замещения от 31% до 50%.

Ключевые критерии решений для обработки Big Data — безопасность решения (59% респондентов), функциональность (51%) и цена обслуживания (44%). Высокий показатель по безопасности связан с тем, что значительная часть респондентов подпадает под регулирование объектов критической критической информационной инфраструктуры.

Основные препятствия для внедрения решений по работе с данными, в том числе отечественных, по мнению респондентов, — высокая стоимость (19%), кадровый дефицит (19%), неготовность инфраструктуры (12%) и низкое качество имеющегося на рынке ПО (12%).

Из реальных эффектов 40% заказчиков надеются на увеличение прибыли. 30% намерены снизить издержки, а 28% — получить информацию для принятия обоснованных управленческих решений. Но заказчики не питают иллюзий к сверхскоростному возврату инвестиций в проекты с применением Big Data. 44% компаний ожидают возврата инвестиций в течение 3-4 лет, 23% — в течение 5 лет.

«Ситуация по импортозамещению решений по большим данным в промышленности, которую показало исследование, практически точно попадает под закон Парето. 22% компаний заместили более 70% решений по работе с данными. В основном это крупные предприятия, которые имели возможность быстро приступить к миграции и выделять на это достаточный бюджет. И именно эти 22% дают импульс для импортозамещения оставшихся 78%. Наличие на рынке промышленности реальных проектов с применением отечественного ПО по работе с данными позволяет российским вендорам получать обратную связь по своим решениям и дорабатывать их под запросы рынка, а для других предприятий-заказчиков такие кейсы — реальный пример экономических эффектов от решений с Big Data, повышающий доверие к российскому ПО», — отметил заместитель генерального директора К2Тех Игорь Зельдец.

«Данные — важный актив для промышленных предприятий, и лидеры отрасли это понимают. Поэтому все чаще запускают полноценные проекты по работе с данными, разворачивают пилоты. Исследование показывает, что промышленники представляют, какие бизнес-эффекты может принести внедрение технологий Big Data, и активно взаимодействуют с вендорами, у которых уже есть успешные кейсы внедрения их решений», — пояснил директор департамента Группы Arenadata по работе с промышленным сектором Максим Власюк.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Спрос на услуги по безопасности генеративного ИИ активно растет

По данным Swordfish Security, за услугами по безопасности больших языковых моделей (LLM Security) в 2024 году обращались 35% заказчиков. Спрос на такие услуги растет прямо пропорционально внедрению подобных инструментов в бизнес-практику.

В 2025 году такая практика будет только расширяться, поскольку генеративный интеллект, прежде всего, большие языковые модели, будут внедряться все более активно. В будущем году уровень проникновения генеративного ИИ составит не менее 40%, а к 2030 году может достигнуть и 90%.

Как отметил директор по развитию бизнеса ГК Swordfish Security Андрей Иванов, рост интереса к безопасности больших языковых моделей стал одной из главных тенденций 2024 года. Недооценка таких рисков чревата серьезными проблемами. Среди таких рисков Андрей Иванов инъекции вредоносного кода в промпт, уязвимости в цепочках поставок, выдача ошибочной информации за истину на этапе обучения модели и даже кража модели злоумышленниками.

«В бизнесе используют большие модели для распознавания текста, анализа данных, предиктивной аналитики, поиска, оценки ресурса механических узлов промышленных агрегатов и многого другого. Многие отрасли, та же ИТ, активно используют ИИ-помощников. Например, в DevSecOps мы обучили и применяем модель, которая может анализировать и приоритизировать большой объем уязвимостей кода, таким образом освобождая время для квалифицированных инженеров для других, более сложных и творческих задач, — комментирует Андрей Иванов. — Критичным может оказаться, например, некорректная работа виртуальных ассистентов, которые могут влиять на клиентские решения, аналитику, дающую ошибочную информацию в цепочке поставок. Существуют атаки, отравляющие данные или позволяющие получить конфиденциальную информацию, и так далее. К этому стоит относиться как к любой информационной системе, влияющей на бизнес-процесс и проводящей, в случае компрометации, к потерям репутации и убыткам».

Внедрение ИИ требует корректировки корпоративных политик ИБ. Важно делать акцент на безопасности, а разрабатывать модели необходимо в соответствие с практиками разработки безопасного ПО, анализируя исходный код и зависимости, ответственно относиться к контролю доступа к источникам данных и стараться использовать доверенные алгоритмы обучения, уверен Андрей Иванов. Также важно учитывать то, что многие большие языковые модели используют облачную архитектуру, а это создает угрозу утечки конфиденциальных данных.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru