В критически важных приложениях обнаружен опасный код

В критически важных приложениях обнаружен опасный код

Оказывается, не только разработчики Android-приложений грешат неграмотным внедрением SSL, но подобные ошибки присутствуют в программах ведущих софтверных компаний, включая Amazon и Paypal.

Неграмотная процедура проверки SSL-сертификатов обнаружена в критически важных приложениях, SDK, Java middleware, банковском софте и т.д., что открывает перед злоумышленниками возможности для MiTM-атаки — ничего хуже этого и представить невозможно, считают исследователи из Стэнфордского и Техасского университетов, которые опубликовали научную работу «Самый опасный код в мире: проверка SSL-сертификатов вне браузера». Достоин упоминания тот факт, что группа американских учёных работала под руководством кандидата наук Техасского университета Виталия Шматикова, пишет xakep.ru.

Итак, исследователи обнаружили некорректную процедуру SSL-валидации в ряде очень серьёзных программ:

Java-библиотека Amazon EC2 и все облачные клиенты на её основе;SDK Amazon и SDK Paypal, которые отвечают за передачу платёжных данных от торговой площадки к платёжному гейту;движки интернет-магазинов osCommerce, ZenCart, Ubercart и PrestaShop;код AdMob в мобильных веб-сайтах;мобильное приложение банка Chase и некоторые другие приложения и библиотеки под Android;Java middleware для веб-сервисов, включая Apache Axis, Axis 2, Codehaus XFire и библиотеку Pusher для Android, а также все приложения, которые используют перечисленное middleware.

В качестве примера безалаберности можно привести фрагмент исходного кода банковского приложения Chase.

public final void checkServerTrusted(X509Certificate[]
paramArrayOfX509Certificate, String paramString)
{
if ((paramArrayOfX509Certificate != null) && (
paramArrayOfX509Certificate.length == 1))
paramArrayOfX509Certificate[0].checkValidity();
while (true)
{
return;
this.a.checkServerTrusted(
paramArrayOfX509Certificate, paramString);
}
}

Любое SSL-соединение, установленное каждой из перечисленных программ, не является безопасным. Ключевая проблема лежит не столько в низкой квалификации разработчиков, сколько в плохом дизайне программных интерфейсов для реализации SSL (таких как JSSE, OpenSSL и GnuTLS) и библиотек для передачи данных (таких как cURL). Эти API и библиотеки сложны для обычного программиста, предлагая ему слишком путаный набор настроек и опций.

Например, в cURL есть несколько параметров для CURL_SSL_VERIFYHOST. Параметр VERIFYHOST=0 интуитивно понятен: он отключает проверку сертификата. Параметр VERIFYHOST=2 выполняет корректную проверку и сверяет имя хоста, указанное в сертификате, с именем хоста, который предъявляет сертификат. А вот параметрVERIFYHOST=1 (VERIFYHOST=TRUE) делает нечто очень странное: он проверяет, что сертификат принадлежит какому-то хосту, а затем принимает его от любого хоста. Понятно, что многие программисты не ожидали от cURL такой «подставы». Кстати, разработчик cURL Дэниел Стенберг вчера уже высказался по этому поводу. Ему после 10+ лет работы над cURL очень обидно слышать подобные обвинения, тем более что за все эти годы никто ни разу не предлагал изменить параметры для CURL_SSL_VERIFYHOST.

По результатам анализа ситуации с реализацией SSL в различных приложениях Шматиков с коллегами выработали ряд рекомендаций, в том числе они рекомендуют использовать специальное программное обеспечение для проверки корректности программного кода и пентестинга: например, программа TLSPretense. Есть также чёткая инструкция, как реализовать проверку SSL-сертификатов с помощью OpenSSL и репозиторий примеров правильного кода SSL Conservatory.

ИИ научился выявлять депрессию по голосовым сообщениям в WhatsApp

Учёные показали, что депрессию можно распознать буквально «по голосу» — и для этого не нужны ни долгие опросники, ни визит к врачу. Достаточно короткого голосового сообщения в WhatsApp (принадлежит Meta, признанной экстремистской и запрещенной в России).

Исследователи из Медицинской школы Санта-Каса-де-Сан-Паулу и компании Infinity Doctors разработали медицинскую языковую модель, которая с высокой точностью определяет наличие депрессивного расстройства по аудиосообщениям.

Результаты работы опубликованы 21 января 2026 года в открытом журнале PLOS Mental Health.

В эксперименте модель анализировала короткие голосовые сообщения, где участники просто рассказывали, как прошла их неделя. И результат оказался неожиданным: у женщин с диагностированной депрессией точность распознавания превысила 91%.

Это один из лучших показателей среди подобных исследований, особенно с учётом того, что речь идёт о бытовых сообщениях, а не специально записанных медицинских интервью.

Для обучения и тестирования использовались два набора данных с WhatsApp-аудио от носителей португальского. В них вошли записи пациентов с подтверждённым диагнозом «большое депрессивное расстройство» и контрольной группы без депрессии.

Часть сообщений была максимально простой — участникам предлагали досчитать от одного до десяти, другая часть — более естественной: свободный рассказ о прошедшей неделе.

Лучше всего модель справлялась именно со «спонтанной речью». У мужчин точность в этом же сценарии оказалась ниже — около 75%, что авторы связывают с меньшим числом мужских голосов в обучающей выборке и возможными различиями в речевых паттернах. При анализе простого счёта до десяти разница между полами почти исчезала: точность составляла около 80% у женщин и чуть меньше у мужчин.

По словам авторов, модель улавливает тонкие акустические признаки — темп речи, интонации, паузы, — которые сложно заметить человеку, но хорошо видит машинное обучение. И главное — всё это происходит в привычном для людей формате повседневного общения.

Исследователи считают, что при дальнейшем развитии технология может лечь в основу недорогих и удобных инструментов раннего скрининга депрессии, не требующих сложных процедур и не нарушающих повседневные привычки пользователей.

Как отметил старший автор исследования Лукас Маркес, «незаметные акустические особенности обычных голосовых сообщений могут с неожиданной точностью указывать на депрессивные состояния».

Напомним, в недавнем исследовании метаданные WhatsApp показали: мы плохо понимаем, как ведём себя в чатах.

RSS: Новости на портале Anti-Malware.ru