Positive Technologies представила решение для выявления целевых атак

Positive Technologies представила решение для выявления целевых атак

Positive Technologies представила решение для выявления целевых атак

Компания Positive Technologies пополнила линейку своих решений технологическим комплексом для раннего выявления и предотвращения целевых атак. Решение предназначено для крупных компаний с высоким уровнем зрелости ИБ и позволяет выявлять сложные угрозы, в том числе специфичные для России. Впервые решение было представлено на SOC-Форуме 2018.

Решение сочетает в себе технологии глубокого анализа трафика и передаваемых файлов, дополнено сервисом ретроспективного мониторинга от PT Expert Security Center. Оно выявляет присутствие атакующего не только на периметре, но и в инфраструктуре. Это существенно повышает эффективность выявления сложных атак на разных стадиях, а также снижает потенциальные финансовые потери.

«Число компаний, которые стали жертвами целевых атак в 2017 году, выросло в два раза: по нашим данным, 9 из 10 жертв даже не подозревают о взломе. Существующие решения выявляют целевые атаки на периметре, но не способны выявить угрозу, если злоумышленники уже проникли в инфраструктуру. Детектировать взлом удается не сразу: как показывает практика, до его обнаружения в среднем проходит до 197 дней, — говорит Алексей Данилин, руководитель направления по развитию бизнеса Positive Technologies. — После преодоления периметра около 60% атак распространяются в инфраструктуре горизонтально, поэтому они долго остаются незамеченными. Чтобы эффективно и заблаговременно детектировать целевые атаки, необходимо следить за злонамеренной активностью и на периметре, и внутри сети, выявляя атаки в трафике. И конечно, необходимо выполнять регулярный ретроспективный анализ. Именно этот подход мы постарались реализовать в новом решении».

Комплекс позволяет в режиме реального времени обнаруживать и локализовывать присутствие злоумышленника в сети, а также воссоздавать полную картину атаки для детального расследования. Решение анализирует файлы в различных потоках данных с помощью нескольких антивирусов, «песочницы» и собственных репутационных списков, а также выявляет атаки в трафике на основе большого количества признаков. Так, к примеру, автоматически выявляется применение всех популярных хакерских инструментов, эксплуатация уязвимостей ПО и нарушение политик безопасности — то, что обычно остается не замеченным другими средствами защиты.

Благодаря ретроспективному анализу решение находит не обнаруженные ранее факты взлома инфраструктуры, что позволяет сократить до минимума длительность скрытого присутствия злоумышленника.

«В основе комплекса — уникальная база знаний, которую наши эксперты постоянно пополняют по итогам регулярных работ по анализу защищенности, расследований сложных инцидентов и анализа безопасности различных систем, — комментирует Евгения Красавина, руководитель отдела продвижения и развития продуктов Positive Technologies. — Благодаря этому и глубокой экспертизе Positive Technologies в обеспечении безопасности сложных инфраструктур решение эффективно выявляет даже самые новые угрозы».

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Спрос на услуги по безопасности генеративного ИИ активно растет

По данным Swordfish Security, за услугами по безопасности больших языковых моделей (LLM Security) в 2024 году обращались 35% заказчиков. Спрос на такие услуги растет прямо пропорционально внедрению подобных инструментов в бизнес-практику.

В 2025 году такая практика будет только расширяться, поскольку генеративный интеллект, прежде всего, большие языковые модели, будут внедряться все более активно. В будущем году уровень проникновения генеративного ИИ составит не менее 40%, а к 2030 году может достигнуть и 90%.

Как отметил директор по развитию бизнеса ГК Swordfish Security Андрей Иванов, рост интереса к безопасности больших языковых моделей стал одной из главных тенденций 2024 года. Недооценка таких рисков чревата серьезными проблемами. Среди таких рисков Андрей Иванов инъекции вредоносного кода в промпт, уязвимости в цепочках поставок, выдача ошибочной информации за истину на этапе обучения модели и даже кража модели злоумышленниками.

«В бизнесе используют большие модели для распознавания текста, анализа данных, предиктивной аналитики, поиска, оценки ресурса механических узлов промышленных агрегатов и многого другого. Многие отрасли, та же ИТ, активно используют ИИ-помощников. Например, в DevSecOps мы обучили и применяем модель, которая может анализировать и приоритизировать большой объем уязвимостей кода, таким образом освобождая время для квалифицированных инженеров для других, более сложных и творческих задач, — комментирует Андрей Иванов. — Критичным может оказаться, например, некорректная работа виртуальных ассистентов, которые могут влиять на клиентские решения, аналитику, дающую ошибочную информацию в цепочке поставок. Существуют атаки, отравляющие данные или позволяющие получить конфиденциальную информацию, и так далее. К этому стоит относиться как к любой информационной системе, влияющей на бизнес-процесс и проводящей, в случае компрометации, к потерям репутации и убыткам».

Внедрение ИИ требует корректировки корпоративных политик ИБ. Важно делать акцент на безопасности, а разрабатывать модели необходимо в соответствие с практиками разработки безопасного ПО, анализируя исходный код и зависимости, ответственно относиться к контролю доступа к источникам данных и стараться использовать доверенные алгоритмы обучения, уверен Андрей Иванов. Также важно учитывать то, что многие большие языковые модели используют облачную архитектуру, а это создает угрозу утечки конфиденциальных данных.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru