STAMINA — новый метод детектирования вредоносов от Microsoft и Intel

STAMINA — новый метод детектирования вредоносов от Microsoft и Intel

STAMINA — новый метод детектирования вредоносов от Microsoft и Intel

Специалисты двух техногигантов Microsoft и Intel разработали новый подход к детектированию вредоносных программ. Ключевыми особенностями этого подхода стали глубокое обучение и представление вредоносов в виде графических изображений.

Технология Microsoft и Intel получила имя «STAtic Malware-as-Image Network Analysis» (коротко — STAMINA), в её основе лежит предыдущая работа Intel по классификации вредоносных программ.

Специалисты разработали STAMINA вокруг исследования бинарных файлов зловредов, представленных в виде изображения в градациях серого. В процессе эксперты выяснили, что между таким изображениями вредоносных программ одного семейства есть определённое структурное сходство.

По аналогии: существуют такие же различия между вредоносами разных семейств, а также, что немаловажно, между злонамеренными и безобидными программами.

В посвящённой STAMINA статье специалисты утверждают, что классический метод детектирования вредоносов с помощью сигнатур со временем затрудняется непрерывным увеличением количества образцов вредоносного кода.

STAMINA включает четыре шага: предварительная обработка (конвертация изображения), обучение (transfer learning), оценка и интерпретация.

Первый шаг подразумевает преобразование пикселей (каждый байт получает значение между 0 и 255), создание новой формы (пиксели получают два основных значения — ширина и высота) и изменение размера.

Далее в дело вступает машинное обучение, призванное подготовить классификатор вредоносных программ для выполнения выделенных ему функций.

Предпоследний шаг (оценка) требует от исследователей пристального внимания к надёжности метода: процент ложных срабатываний, точность детектирования, F-мера и т. п. По словам специалистов, исследование проводилось на базе Microsoft, содержащей 2,2 млн хешей бинарников вредоносных программ.

Тестирование показало, что STAMINA может обеспечить 99,09% точных детектов. Ложных срабатываний при этом получилось 2,58%. Следует отметить, что новый способ подходит только для приложений малого размера, поскольку STAMINA с трудом сможет конвертировать «миллионы пикселей в JPEG-изображения».

30-летняя уязвимость в libpng поставила под удар миллионы приложений

Анонсирован выпуск libpng 1.6.55 с патчем для опасной уязвимости, которая была привнесена в код еще на стадии реализации проекта, то есть более 28 лет назад. Пользователям и разработчикам советуют как можно скорее произвести обновление.

Уязвимость-долгожитель в библиотеке для работы с растровой графикой в формате PNG классифицируется как переполнение буфера в куче, зарегистрирована под идентификатором CVE-2026-25646 и получила 8,3 балла по шкале CVSS.

Причиной появления проблемы является некорректная реализация API-функции png_set_dither(), имя которой было со временем изменено на png_set_quantize(). Этот механизм используется при чтении PNG-изображений для уменьшения количества цветов в соответствии с возможностями дисплея.

Переполнение буфера возникает при вызове png_set_quantize() без гистограммы и с палитрой, в два раза превышающей максимум для дисплея пользователя. Функция в результате уходит в бесконечный цикл, и происходит чтение за границей буфера.

Эту ошибку можно использовать с целью вызова состояния отказа в обслуживании (DoS). Теоретически CVE-2026-25646 также позволяет получить закрытую информацию или выполнить вредоносный код, если злоумышленнику удастся внести изменения в структуру памяти до вызова png_set_quantize().

Уязвимости подвержены все версии libpng, с 0.90 beta (а возможно, и с 0.88) до 1.6.54. Ввиду широкого использования библиотеки пользователям настоятельно рекомендуется перейти на сборку 1.6.55 от 10 февраля 2026 года.

RSS: Новости на портале Anti-Malware.ru