В критически важных приложениях обнаружен опасный код

В критически важных приложениях обнаружен опасный код

Оказывается, не только разработчики Android-приложений грешат неграмотным внедрением SSL, но подобные ошибки присутствуют в программах ведущих софтверных компаний, включая Amazon и Paypal.

Неграмотная процедура проверки SSL-сертификатов обнаружена в критически важных приложениях, SDK, Java middleware, банковском софте и т.д., что открывает перед злоумышленниками возможности для MiTM-атаки — ничего хуже этого и представить невозможно, считают исследователи из Стэнфордского и Техасского университетов, которые опубликовали научную работу «Самый опасный код в мире: проверка SSL-сертификатов вне браузера». Достоин упоминания тот факт, что группа американских учёных работала под руководством кандидата наук Техасского университета Виталия Шматикова, пишет xakep.ru.

Итак, исследователи обнаружили некорректную процедуру SSL-валидации в ряде очень серьёзных программ:

Java-библиотека Amazon EC2 и все облачные клиенты на её основе;SDK Amazon и SDK Paypal, которые отвечают за передачу платёжных данных от торговой площадки к платёжному гейту;движки интернет-магазинов osCommerce, ZenCart, Ubercart и PrestaShop;код AdMob в мобильных веб-сайтах;мобильное приложение банка Chase и некоторые другие приложения и библиотеки под Android;Java middleware для веб-сервисов, включая Apache Axis, Axis 2, Codehaus XFire и библиотеку Pusher для Android, а также все приложения, которые используют перечисленное middleware.

В качестве примера безалаберности можно привести фрагмент исходного кода банковского приложения Chase.

public final void checkServerTrusted(X509Certificate[]
paramArrayOfX509Certificate, String paramString)
{
if ((paramArrayOfX509Certificate != null) && (
paramArrayOfX509Certificate.length == 1))
paramArrayOfX509Certificate[0].checkValidity();
while (true)
{
return;
this.a.checkServerTrusted(
paramArrayOfX509Certificate, paramString);
}
}

Любое SSL-соединение, установленное каждой из перечисленных программ, не является безопасным. Ключевая проблема лежит не столько в низкой квалификации разработчиков, сколько в плохом дизайне программных интерфейсов для реализации SSL (таких как JSSE, OpenSSL и GnuTLS) и библиотек для передачи данных (таких как cURL). Эти API и библиотеки сложны для обычного программиста, предлагая ему слишком путаный набор настроек и опций.

Например, в cURL есть несколько параметров для CURL_SSL_VERIFYHOST. Параметр VERIFYHOST=0 интуитивно понятен: он отключает проверку сертификата. Параметр VERIFYHOST=2 выполняет корректную проверку и сверяет имя хоста, указанное в сертификате, с именем хоста, который предъявляет сертификат. А вот параметрVERIFYHOST=1 (VERIFYHOST=TRUE) делает нечто очень странное: он проверяет, что сертификат принадлежит какому-то хосту, а затем принимает его от любого хоста. Понятно, что многие программисты не ожидали от cURL такой «подставы». Кстати, разработчик cURL Дэниел Стенберг вчера уже высказался по этому поводу. Ему после 10+ лет работы над cURL очень обидно слышать подобные обвинения, тем более что за все эти годы никто ни разу не предлагал изменить параметры для CURL_SSL_VERIFYHOST.

По результатам анализа ситуации с реализацией SSL в различных приложениях Шматиков с коллегами выработали ряд рекомендаций, в том числе они рекомендуют использовать специальное программное обеспечение для проверки корректности программного кода и пентестинга: например, программа TLSPretense. Есть также чёткая инструкция, как реализовать проверку SSL-сертификатов с помощью OpenSSL и репозиторий примеров правильного кода SSL Conservatory.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru