Университетские исследователи разработали методику, позволяющую внешнему наблюдателю с ограниченным обзором узнать, сколько людей в комнате и чем они заняты. Как оказалось, источником информации может стать даже пустая стена, если ты вооружен видеокамерой с высоким разрешением и ИИ-анализатором, умеющим выделять нужный сигнал из шума при еле различимом изменении освещения.
Чтобы доказать такую возможность, в Массачусетском технологическом институте (MIT) провели обучение двух сверточных нейросетей на наборах данных, полученных при проигрывании 20 различных сценариев поведения человека. В итоге исследователям удалось повысить точность прогнозирования до 94%. Результаты работы будут представлены на Международной конференций по машинному зрению (ICCV 2021), которая стартует в понедельник, 11 октября, в режиме онлайн.
«Когда человек ходит по комнате, он частично заслоняет собой свет, и на стенах колышутся легкие, едва различимые тени, — пояснил один из соавторов исследования для Scientific American. — Если одежда яркая, может появиться приглушенный отблеск. Однако эти слабые сигналы обычно тонут в потоке света из основного источника, и при видеонаблюдении этот шум надо как-то убрать, чтобы он не мешал следить за объектом».
Исследователям удалось разделить световой шум и полезную информацию, а также вычленить ложные сигналы — тени от мебели и других неподвижных предметов. При видеосъемке пустых стен комнаты все лишние составляющие отсеивались в реальном времени.
Эксперименты проводились в различных помещениях, с разным числом объектов наблюдения, которые действовали по заданному сценарию, стараясь не попасть в объектив. Отснятые видеоматериалы прогонялись через модель машинного обучения; в итоге система научилась без калибровки уверенно определять количество людей и их активность в любой комнате.
При плохом внутреннем освещении или мерцающем свете (такое бывает, когда в комнате включен телевизор) созданная в MIT система работает хуже. К недостаткам можно также отнести тот факт, что для подобного соглядатайства нужна видеокамера с высоким разрешением: обычная цифровая камера создает много фонового шума, а возможности смартфона в этом плане слишком слабы.
Предложенный MIT вариант продвинутой слежки могут по достоинству оценить военные или контрразведка. Исследователи также считают, что их метод можно использовать и в мирных целях — например, для обнаружения пешеходов в местах с плохим обзором (на крытых парковках и автостоянках) или для присмотра за пожилыми людьми, которые могут внезапно почувствовать себя плохо или даже упасть.
Киберпреступники задействовали возможности игрового движка Godot для распространения новой версии вредоносной программы GodLoader. В результате злоумышленникам удалось заразить более 17 тысяч систем всего за три месяца.
На активность операторов GodLoader обратили внимание исследователи из Check Point Research. По их словам, киберпреступники нацелились на все основные ОС: Windows, macOS, Linux, Android и iOS.
С помощью файлов .pck (формат игрового движка Godot) и скриптового языка GDScript атакующие смогли выполнять вредоносный код и уходить от детектирования.
После запуска специально подготовленных вредоносных файлов на устройстве злоумышленники могут красть учётные данные и загружать дополнительные пейлоады, среди которых встречается криптомайнер XMRig.
Конфигурация майнера размещалась в частном хранилище Pastebin, куда её загрузили ещё в мае. С тех пор к этой конфигурации обращались в общей сложности 206 913 раз.
«Как минимум с 29 июня 2024 года злоумышленники используют движок Godot для выполнения специально созданного GDScript-кода. Большинство антивирусов на VirusTotal не детектируют эту угрозу», — говорит в отчёте Check Point.
«Предположительно, злоумышленникам удалось заразить более 27 тысяч компьютеров».
Подписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.
Свидетельство о регистрации СМИ ЭЛ № ФС 77 - 68398, выдано федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 27.01.2017 Разрешается частичное использование материалов на других сайтах при наличии ссылки на источник. Использование материалов сайта с полной копией оригинала допускается только с письменного разрешения администрации.