Группа исследователей из университетов Великобритании подготовила модель обучения, которая может извлекать данные из звука нажатий клавиш клавиатуры. По словам специалистов, в тестах точность составила 95%.
Интересно, что при использовании Zoom для обучения алгоритма точность упала до 93%, однако это по-прежнему очень высокий процент и фактически рекорд для таких условий.
Подобные атаки критически отражаются на безопасности данных, так как с их помощью злоумышленники могут вытащить пароли, сообщения и другую личную информацию.
Кроме того, стоит учитывать, что у акустических атак есть ощутимое преимущество перед атаками по сторонним каналам: последние всегда требуют специальных условий и, как правило, ограничиваются дистанцией и количеством передаваемых данных; а вот акустические стали гораздо проще в реализации из-за массы устройств с микрофонами, обеспечивающими качественную передачу звука.
Первым шагом в описанном исследователями векторе будет запись нажатий клавиш, именно эти данные используются для тренировки алгоритма. В реальном сценарии этого можно добиться так: заразить мобильное устройство жертвы вредоносной программой и использовать микрофон смартфона для записи нажатий клавиш.
Есть и другой подход: записать нужный звук в процессе звонка по Zoom. Обучая модель, специалисты нажимали 36 клавиш на MacBook Pro, каждую 25 раз, и записывали звук, издаваемый каждой клавишей.
После этого эксперты формировали спектрограммы, визуализирующие разницу между звуками. Эти спектрограммы тренировали CoAtNet, классификатор изображений.
В тестах исследователей использовалась клавиатура Apple, которой корпорация оснащала все свои ноутбуки, выпущенные за последние пару лет. В 17 сантиметрах от лэптопа лежал iPhone 13 mini, а также использовался Zoom.
Согласно отчету (PDF), CoANet удалось достичь 95% точности при использовании рядом лежащего iPhone, 93% — при использовании Zoom и 91,7%, если в дело вступал Skype.